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Abstract

SYNTHESIS OF A LIBRARY OF SULFATED SMALL MOLECULES
By Shrenik Mehta
A Thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2011

Major Director: Umesh R. Desai
Professor, Department of Medicinal Chemistry

The discovery of heparin in 1916 resulted in a huge impact on the practice of
medicine. Heparin has played a major role in alleviating thrombotic disorders and has
also exhibited effects on almost every major system in the human body. Over the past
few decades, more and more heparin-protein interactions have come to light. It is
implicated to modulate several important processes such as cell growth and
differentiation, inflammatory response, viral infection mechanism etc. More interesting is
the observation that these interactions are considerably specific with regard to
oligosaccharide sequences which have specific spatially oriented sulfate groups
modulating the responses. However, due to the complex nature of these interactions and
lack of effective computational capabilities, predicting these interactions is challenging.

viii
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IX
An alternative approach to modulating heparin-protein interactions would be to

screen a library of molecules having a diverse distribution of the negative charges and
screen them against various proteins of interest to obtain valuable information about the
binding/selectivity requirements. This approach would not only yield molecules with
potential clinical viability, but may also yield molecules that help decipher native
mechanisms regulating proteins, which is called chemical biology in today’s terms. Since
the difficulties associated with carbohydrate synthesis are well known, well characterized
highly sulfated oligosaccharide library screening is considered nearly impossible. Thus,
the main aim of this project was to develop an effective method for the synthesis of a
library of variably sulfated, non-carbohydrate molecules. The library would contain
varying in the number of sulfate groups, offer positional variants of the sulfate groups
and provide molecules of varying length so as to afford structural diversity necessary to

mimic the heparin sequences.

Previous attempts in our laboratory to synthesize such a library encountered two
major problems: 1) dimerization of polyphenols due to difficult protection / deprotection
strategies and 2) ineffective purification of highly water soluble sulfated molecules. To
overcome the problem of protection-deprotection, “click” chemistry has been used in this
work for dimerization of polyphenols without any protective groups. To overcome the
second problem, a non-aqueous method of purification of highly sulfated molecules was

developed, which is the first such report.
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X
As a proof of concept, a small library of 14 sulfated monomers and dimers and 8

non-sulfated dimers was generated. The protocol for dimerization of free polyphenolic
molecules in has been established to use “click” chemistry for coupling the monomers
without the need to protect the free hydroxyl groups. Thus by circumventing the
inefficient protection-deprotection protocol, there is a tremendous improvement in yields,
ease of purification and characterization and greater productivity allowing the synthesis
of more number of molecules in a relatively shorter span of time. By masking the charge
of the sulfate using an appropriate counter-ion and owing to the inherent lipophilicity of
the aromatic scaffold, these highly charged molecules could be purified using normal
phase silica gel chromatography. This method reduced the purification time from
previous over 48 hours with the aqueous method to approximately 15 minutes. Further,
this purification protocol may be possibly automated so as to truly generate a large library

of variably sulfated non-carbohydrate molecules for the first time.

Screening this library of 22 sulfated and unsulfated molecules against three
enzymes of the coagulation cascade — factors lla, Xa and Xla — has provided a wealth of
information with regard to engineering specificity for recognition of these enzymes. The
screening led to the identification of CS3 which inhibited factor Xla with an IC 50 of ~ 5
uM and other enzymes with an IC 50 of > 500 uM as a lead candidate with high
selectivity. The success of this strategy bodes well for understanding the heparin-protein

interactions at a molecular level.
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Chapter 1 Introduction

1.1 Discovery and development of heparin

The year 1916 marked the discovery of heparin by a medical student Jay McLean.
This historic event took place in Dr. William Howell’s laboratory at Johns Hopkins
University.! Over the next few decades, a lot of work was done on this new entity. The
components of heparin were identified to be uronic acid and glucosamine in 1928 and
1935-1936 by Howell and Jorpes - Bergstrom respectively.? However, it was not until
1940, that evidence for presence of a high sulfation pattern in heparin was provided by
Jorpes and Charles.® In 1968, Perlin et al. finally confirmed that L-iduronic acid was the
uronic acid in heparin.* Thus, it was concluded, that heparin is a highly sulfated
polysaccharide consisting of repeating iduronic acid and glucosamine units linked in a 1-
4 manner (Figure 1). In spite of it being discovered almost 20 years ago, it was not until
1935 that sufficiently purified heparin could be obtained for testing its efficacy against
post-operative thrombosis and thrombo-embolic disease in human subjects.>® This
preparation, credited to the effort of Charles and Scott in Toronto and Jorpes in
Stockholm, however, occasionally led to fever, chills, joint pain and other short term side
effects.® With better purification techniques, better understanding of the coagulation
cascade and development of fractionated heparin in the form of low molecular weight

heparin (LMW) heparin has formed an important part of drug therapy worldwide.’
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2
Figure 1 General structure of heparin (Figure adapted from Henry, B. L.; Desal,

U. R. Recent developments in the direct inhibition of coagulation proteinases-inhibitors

of the initiation phase. Cardiovasc. Hematol. Agents Med. Chem. 2008, 6, 323-336).

COO~  CHOX o0~ CH,OX
(0]
kOOH oz OH (074
(e) 4 NHR (0)4 NHR

X,Yand Z=-H or -0S80; ;R = -COCH; or -0SO;"
Heparin (My, =~15,000 Da); LMW-heparin (My, =~5,000 Da)

1.2 Heparin-protein interactions

Heparin is well known for its interactions with the proteins of the blood
coagulation cascade. However, heparin and its derivatives have been shown to interact
with a number of other proteins as well. In the circulatory system, heparin binds to and
activates the antithrombin mediated inhibition of factor Xa, factor Xla and thrombin
which are essential protein in the coagulation cascade. The end result of this inhibition is
delaying of the clotting process. Heparin is also well known to affect various growth
factors such as fibroblast growth factor (FGF), vascular endothelial growth factor
(VEGF), endothelial factor (EF) and it is thus implicated as an anti-cancer agent. Its role
in inflammatory processes is attributed to its interactions with endotoxin, tissue necrosis
factor-o. (TNF-a), neutrophils, adhesion molecules expressed on endothelial and
leukocyte cell surface etc. Finally, preventing viral binding and internalization by

recognizing viral coat proteins, heparin exhibits anti-viral properties (Figure 2).
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Figure 2 Heparin-protein interactions. (Figure adapted from Capila, I.; Linhardt.

R. J. Heparin-protein interactions. Angew. Chem. Int. Ed. 2002, 41, 390-412.)

Blood
coagulation
process

Heparln/ Cell growth
Heparan Lo
Sulfate ifferentiation

Inflammatory
processes

Host defense
and viral
infection

mechanism

1.2.1 Regulation of proteases

Heparin-antithrombin 11l is the first and most well studied heparin-protein
interaction. The potency of heparin as an anticoagulant is mainly due to its ability to
accelerate the antithrombin Il mediated inhibition of thrombin and factor Xa. Serine
protease inhibitors (SERPIN) form inactive complexes with serine proteases, which are
then cleared from the body. More than 40 proteins belong to the serpin family.
Antithrombin (AT) is one such protein.2 The mechanism by which this antithrombin
mediated inhibition of serine protease occurs is called the serpin mouse trap mechanism.

The reactive center loop (RCL) of antithrombin contains P1-P1’ residues which bind to

www.manharaa.com
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the target serine protease. The P1-P1’ bond is scissile and as soon as the Michaelis-

Menten complex (E:AT) is formed, this bond is cleaved. This results in the formation of
the acyl-enzyme intermediate (E-AT), whose rearrangement leads to subsequent
disruption of the catalytic triad of the enzyme (E*-AT*). Mutational changes in AT may
lead to competition from a parallel pathway known as the substrate pathway. This leads
to hydrolysis of the acyl-enzyme intermediate (E-AT), thus releasing the active enzyme
(E) and the cleaved inhibitor (ATc) (Figure 3). In the presence of heparin, there is a 10*-
10° fold increase in the rate of inhibition of flla, fXa, and fXla.**

The pentasaccharide sequence of heparin containing 5 residues DEFGH interacts
with AT (Figure 4). Depending on the length of sequence binding, AT can inhibit the
proteases by two mechanisms. Once the pentasaccharide is recognized by the AT, it leads
to a change in conformation of the partially inserted RCL, followed by its accelerated
cleavage.*? The second mechanism is the bridging mechanism, where binding of the
AT to UFH is followed by non-specific binding of thrombin along the polysaccharide
chain. The Michaelis-Menten complex (E: AT) is then formed by the diffusion of

thrombin along the chain (Figure 5).*3
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Figure 3 A representation of the AT inhibition mechanism for serine proteases

(Figure is adapted from Desai, U. R. New antithrombin based anticoagulants. Med. Res.

Rev. 2004, 24, 151-181).

Inhibition AT*-E*

Pathway
: %
k1 k2
E + AT —=2 AT.E ¥—2AT-E ks
k4 k.,
kl
Substrate AT o E
Pathway _
Figure 4 The pentasaccharide binding sequence
CH,0S80; CH,0S0;— CH,080;
(o{e]0)
Q Q\é?\“m‘
NHSO;— 0S80;~ NHSO;™
DEFGH
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Figure 5 The mechanisms of antithrombin inhibition of proteases in the

presence of heparin (Figure adapted from Desai, U. R. New antithrombin based

anticoagulants. Med. Res. Rev. 2004, 24, 151-181).
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1.2.2 Regulation of cell growth factors

Growth factors or fibroblast growth factors (FGF’s) are a group of 23 proteins
that are implicated in a variety of physiological processes such as cell proliferation,
differentiation, morphogenesis and angiogenesis.'* Since the first evidence of inhibition
of vascular smooth muscle cell growth by heparin in 1977, followed by the advent of
heparin-agarose columns to purify growth factors in 1984, heparin and heparan sulfate’s
(HS) roles in cell growth and regulation are now well established facts.*>*® Heparin and
cell surface HS play a dual role in stabilizing the binding of FGF to the fibroblast growth
factor receptor (FGFR) and also promoting dimerization and subsequent of the FGFRs."
Besides, the affinity of vascular endothelial growth factor (VEGF) and epidermal growth
factor (EGF) are also enhanced by HS and heparin.**® In addition, heparin and HS have
the ability to directly affect receptor signaling and in turn modulate cell growth,
independently without the involvement of protein ligands such as growth factors by direct
interaction with ‘heparin receptors.?’ Considering the close modulation of cell signaling
and growth, their involvement in cancer is fairly intuitive and their role in tumorigenisis,
angiogenesis and metastasis is well documented.?*#
1.2.3 Regulation of inflammatory processes

The existence of a subtle relationship between thrombosis and inflammatory
diseases both in the vascular and cardiovascular systems.”® A well known representation
of this phenomenon is the attainment of a hypercoagulable state due to generation of

tissue factor (TF). This generation of tissue factor is the final outcomes of the various

downstream pro-inflammatory responses due to exposure to interleukins or E. coli
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endotoxin. We can thus conclude that coagulation and inflammation may be regulated by

common molecules. The anti-inflammatory actions of heparin and HS are well
documented.” * This anti-inflammatory effect has been attributed to a number of
interactions including but not limiting to endotoxin, tissue necrosis factor-a (TNF-a),
neutrophils, adhesion molecules expressed on endothelial and leukocyte cell surface
etc.?*? Clinically, heparin has displayed the potential to be therapeutic in managing
ulcerative colitis and Chron’s disease.?** Surprisingly, during the course of these studies,
no hemorrhagic complications were observed. It is thus hypothesized that heparin’s anti-
inflammatory effect may be distinct from its anticoagulant effect.
1.2.4 Role in viral infection mechanism

The most important step in the pathogenesis of a virus is the initial attachment of
the virus to the target cell surface.” This initial binding of the viral envelope to specific
receptors on the cell surface are followed by the internalization of the viron by fusion of
the viral envelope with the cell membrane. Since HS are found on most cell surfaces,
their role in viral binding and entry is not surprising.®* The importance of heparin and HS
is further emphasized by the reduced binding of viruses to cells both in the absence of
cell surface HS and in the presence of heparanases (enzymes cleaving HS).* Thus, in the
presence of soluble heparin or HS, viral infections are reduced as they bind to the virus
and prevent it from binding and internalizing into the cell. This fact has been exploited to
inhibit a number of viruses. Heparin shows anti-HIV activity by binding to the V3 loop
which contains the viral surface glycoprotein gp120. It does not prohibit the virus from

binding to the CD4 cells, but does not allow membrane fusion to take place.* It has been
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well demonstrated that viral entry of herpes simplex virus (HSV) both 1 and 2, along with

other viruses of the herpes family such as human cytpmegalovirus (CMV), human herpes
virus (HMV) and varicella zoster virus (VZV) require HS for the initial binding to host
cell surface.®* Thus, molecules similar to heparin and HS hold potential anti-viral activity
by preventing viral entry into the cell. This has been previously demonstrated in our
laboratory where a sulfated lignins, which could possibly be mimics of HS, displayed
viral inhibition.*
1.3 Predicting heparin-protein interactions

As more and more heparin binding proteins (HBP) were discovered, the value of
understanding these highly specific interactions was highlighted. The idea was that if the
proteins which interact with heparin could be predicted, based on these specific
interactions, it would be easier to exploit heparin, in terms of synthetic mimics for its use

therapeutically. A summary of the various heparin-binding proteins is presented in Table

1.2
HBP Physiological Role Oligosaccharide | K4 Function of
size heparin
AT 111 Coagulation cascade | 5-mer 20 nM | Enhances
activity
FGF-1 Cell proliferation, | 4-mer to 6-mer - Activates signal
differentiation, transduction
angiogenesis etc.
IL-8 Pro-inflammatory 18-mer to 20-mer | 6 uM | Promotes
cytokine
HIV-1 Viral entry into cell 10-mer 0.3 Inhibits
gp120 uM
HSV Viral entry and fusion | Oligosaccharide 20 uM | Inhibits
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Cardin and Weintraub first investigated and tried to establish the general

requirements for such heparin-protein interactions in 1989.% Their study comprised of a
comparative correlation between the heparin binding domains of four proteins, viz.
apolipoprotein B, apolipoprotein E, vitronectin and platelet factor 4. They concluded that,
besides having high sequence homology, these proteins displayed common motifs. They
hypothesized that heparin binding proteins should display the following two motifs. The
first motif, XBBXBX (‘B’ stands for basic and ‘X’ for hydropathic amino acid residues)
should be present in the B-strand conformation while the second motif XBBBXXBX
should be folded in an a-helix. For the von Willebrand factor, another heparin binding
protein, a third motif, XBBBXXBBBXXBBX was proposed by Sobel and coworkers.*’
These motifs were thought to play the role of probes to identify and possibly give
information about the important binding requirements of heparin to various proteins. But,
with discovery of more and more heparin binding proteins, these hypothesis could not be
applied to all these proteins. The fundamental drawback in this method was that it
concentrated on the sequence proximity of the basic residues. In reality, however, the
spatial orientation is more important as the protein folding may bring residues which are
far away in terms of sequence, closer together. Conversely, the heparin chain should also
have specific sequences and orientations to recognize and bind to specific proteins.
Heparin and HS both have sulfo and carboxyl groups displayed at regular intervals and
the defined orientations of these charged groups bestows it with this high level of
specificity and affinity. There are numerous examples as evidence for this spatial

specificity. The 3-O-sulfo group of the pentasaccharide unit of heparin is most essential
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for its high affinity for antithrombin.® Specificity within the same family of proteins has

also been observed. 6-O-sulfo groups are not directly required for binding of FGF-2 to
heparin but they are extremely important for FGF-1.% Thus, considering the importance
of heparin-protein interactions, there lacks a suitable method to provide information
about these interactions.
1.4 The need for a library of small sulfated molecules

lonic interactions predominate the variety of ways in which heparin interacts with
proteins. The spatially defined sulfo and carboxyl groups form ion pairs with specific
positively charged basic amino acid residues of the protein. As we saw earlier, a number
of methods to study these interactions have been tried and failed. But, it is extremely
essential to get more information about theses interactions as it will prove to be extremely
valuable in terms of designing better, more selectively therapeutics. Thus, if we have a
library of molecules differing in number and spatial orientation of sulfate groups, it
would provide us with a great deal of information about these interactions. As easy as it
sounds, obtaining a ‘library’ of compounds is not an easy task. The scaffold must be
chosen such that it has minimum synthetic complications. The yields should be high,
there should be ease of purification and characterization and most importantly, the cost
should be low.
1.5 Difficulties in synthesizing an oligosaccharide library

The most intuitive thing to do in this case would be to try and obtain a library of
diverse sulfated oligosaccharides. However, the synthesis of oligosaccharides fail in

every single requirement for library generation mentioned in the above paragraph. Even
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nature for that matter, which is known for its selectivity and precision, makes saccharides

in an apparent haphazard manner using a wide variety of enzymes in competition to
produce a wide variety of products.*’ Also, the absence of any information carrier
encoding for a specific saccharide structure makes it impossible to adapt techniques
popular for protein synthesis for synthesizing these oligosaccharide libraries.*
Additionally, saccharides are usually branched rather than linear. Two types of linkages,
viz. a or B can be used to connect the monomers gives rise to a new Stereogenic center
with each coupling reaction. The presence of a large number of functional groups of
similar reactivities (hydroxyl and amino) necessitate the development of highly selective
protection and deprotection strategies.”* Furthermore, with every glycosidic linkage, the
complexity of the protection-deprotection strategy increases. The complexity of such
synthesis becomes evident by the fact that greater than 15 million possible
tetrasaccharides can be synthesized from the nine monosaccharides found in humans.
Enzymatic synthesis of oligosaccharides was highly revered as a solution to all these
problems associated with oligosaccharides. Making extensive protection-deprotection
redundant, enzymes provide stereo and regioselectivity. It is thus easier to control the
anomeric configurations and all this under extremely mild reaction conditions. Yet, the
prohibitive cost and scarce availability of these enzymes and substrates are a major
roadblock in this approach.** Low yields coupled with inability to accept unnatural sugars
as substrates makes oligosaccharide libraries a unrealistic proposition.*

Despite these difficulties, groups have attempted synthesis of oligosaccharide

libraries. In general three approaches are very popular for this purpose. The first method
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is ‘random glycosylation’ which involves non-selective coupling of a fucosyl donor to

create three sub-libraries of a-fucosylated disaccharides (Scheme 1). This method yields
an equiproportionate mixture of all possible trisaccharides in a single step. This method is
known for its simplicity as it does not involve any complex protecting group
manipulations. But, screening and hit identification is an extremely complex process as
the samples are mixtures of molecules with identical molecular weight.>* Another popular
strategy is the ‘split and mix’ strategy. Mixtures of trisaccharide libraries of o/p linkage at
every glycosidic linkage can be prepared. The method involves glycosylation of a
monomer to form dimers with two possible linkages, which is split and reacted with two
monomers to further from two possible products each (Scheme 2). In this way a mixture
of 16 trisaccharides can be obtained.”” The third strategy is a ‘two-directional’
glycosylation strategy using solid support. One of the The C6 hydroxyl group of a
monosaccharide is immobilized on solid support and glycosylated with three different
monomers to produce three different dimers. Another hydroxyl group is then deprotected,
followed by a second set of glycosylation reactions with three monomers (Scheme 3).
Thus, a mixture of 12 trisaccharides is obtained.”® Although a number of other methods
have also been tried and published, these three are the most popular methods. As we can
see from the results, a large number of molecules can be obtained through this method,

however, the mixtures are extremely difficult to separate and characterize.*®
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Scheme 2 Split and mix
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Furthermore, synthesis of a sulfated oligosaccharide library as heparin mimics

adds another dimension of complexity to this already convoluted synthetic protocol. The
hydroxyl groups that undergo sulfation in the end have to be selectively protected while
those hydroxyl groups which will be further used to couple other monomers have to
remain free.>® This is extremely difficult to achieve considering the similar reactivities of
these hydroxyl groups. Also, the formation of the oligosaccharide itself requires selective
protection and deprotection strategies, thus the total number of different protecting
groups used in a single monomer can be as high as five different agents.”® In addition, the
amine group, further requires a different protecting group, usually an azide.

1.6 Alternate approach: Synthesis of a non-carbohydrate sulfated library

Considering the above mentioned difficulties, it would seem like a good idea to
try and synthesize diverse polysulfated compounds on an aromatic backbone. The wide
range of reactions, the simple purification and characterization, the simplification of
structure in terms of stereochemistry and the possibility of selecting a suitable scaffold
having hydroxyl groups of different reactivities will probably makes this strategy
synthetically more feasible.

However, even this synthesis is riddled with many problems. The first problem
was that which scaffold would effectively mimic the polysaccharide scaffold. However,
previous studies in our lab concluded that the flavonoid backbone was a good
representative scaffold to work on.”® With the aim of obtaining structural diversity, it
was very important to make flavonoid dimers or biflavonoids. This proved to be a major

hurdle and obtaining the dimerized polyphenol with sufficient purity and yield was an
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extremely difficult task. For the sulfation reaction, the difficulty in achieving a per

sulfated molecule increases as the number of sulfate groups increase. However, the real
difficulty lies in purification of these highly charged species. Aqueous chromatographic
techniques such as size exclusion chromatography are used to purify these molecules and
this results in great loss of time and yields. Thus, weighing both the options, the synthesis
of a library based on the aromatic scaffold, in spite of having its share of difficulties
seems plausible.
1.7 The sulfation reaction

Sulfation is a single step reaction, however the change in the physico-chemical
properties of molecules after sulfation is extremely drastic making such chemistry
extremely difficult. Besides the solubility issues, presence of inorganic salts is also a
problem.*” Drastic reduction in the functional group transformations after sulfation,
sensitivity to acidic conditions and high temperature and the necessity of using high
quantities of starting material make this an extremely challenging task.*® However, given
the importance of the sulfate group in biological as well as other applications several new
methods have been developed to make this reaction more efficient. One of the initial
instances of chemical sulfation was demonstrated in 1965 by use of sulfuric acid.
However, as obvious as it seems, this method suffered from a number of drawbacks such
as scaffold degradation, dehydration, non-selective sulfation.”® Subsequently
dicyclohexylcarbodiimide-mediated sulfation and protection-deprotection strategies for
sulfation where the sulfate is masked and introduced into the scaffold and eventually

deprotected have been developed.**° However, the most effective method for sulfation,
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developed by Raghuraman et al, has been a microwave assisted sulfation method using

sulfurtrioxide complexed with base such as triethylamine. The hypothesis is that ionic
conduction because of coupling of the microwaves with the sulfates may produce
significant rate enhancements. This protocol can tolerate a wide range of functional
groups such as amides, esters, aldehydes as well as alkenes. Besides the significant
enhancement in yields (~70-95%) and short reaction duration (30 mins) makes this
perfect for library synthesis.*’
1.7 Specific aims

In order to synthesize a library of small sulfated molecules, the following synthetic
difficulties have to be overcome.

1. Choosing a scaffold similar to the flavonoids, however offering greater synthetic

ease.
2. Dimerization of molecules with high yields and easy purification

3. Developing alternate means to purify sulfated molecules with enhanced yields.

To overcome the synthetic difficulty associated with the flavonoid scaffold, the
quinazolinone scaffold was selected. These two scaffolds share identical geometry,
however, the presence of the amide hydrogen in the quinazolinone makes manipulation

of the scaffold easy for subsequent dimerization (Figure 6).
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Figure 6. Comparison of the flavone and quinazolinone scaffold
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Previously a number of strategies have been tried to dimerize the molecules.
However, all these techniques required deprotection after dimerization to yield the
polyphenol. This proved to be an extremely difficult step as the result was a complex
mixture of partially deprotected molecules which was impossible to purify. The next
logical step was to devise a way to dimerize the monomers without having to protect
them, thus in turn removing the need for deprotection. The answer lied in one of the most
popular reactions of recent times. Click chemistry consists of a copper catalyzed reaction
where an azide containing monomer and an alkyne containing monomer are coupled by
the formation of a triazole. The beauty of this reaction is that it can be carried out in the
presence of free hydroxyl groups under mild conditions in good yields. Thus the
problematic deprotection step is bypassed. Thus, the second aim is to establish a protocol
for click based dimerization of the quinazolinone monomers and subsequently, optimize
the reaction conditions to afford maximum yield.

The next problem is associated with the purification of sulfated molecules.
Traditionally since these are water soluble, agqueous chromatographic methods such as

size exclusion chromatography have been used to purify these molecules. This led to a
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substantial loss in yields. Also, since the fractions collected are so dilute, it is essential to

start with large quantities to ensure detection and subsequent collection. This created a
high synthetic burden. Due to the highly charged nature of these molecules, non-aqueous
purification techniques are never considered. However, if we closely study the structure
of these scaffolds, there is actually a higher percentage of lipophilic groups. Thus, the
charge can be masked effectively, non-aqueous purification may be possible for these
molecules. So the third aim will be to try using non-aquous purification techniques for
the sulfated molecules and try and eventually try and achieve this using flash
chromatography in order to save time, maximize yields and afford small sample size.

The last and final aim will be to screen this library for direct inhibition of
thrombin, factor Xa, factor Xla and indirect inhibition of factor Xa via antithrombin. First
an initial screening using 500 uM concentration of the synthesized compounds will be
performed and residual enzyme activity will be calculated. If any of the molecules show a
100% reduction in enzyme activity at this concentration, then the 1C50 will be calculated
for that molecule. Subsequently for any promising results, Michaelis-Menten kinetics
experiment will be performed in order to get more information about the type of
inhibition and binding site. Finally, the results for all the enzymes will be compared and
correlated to obtain valuable information about the binding requirements, selectivity

requirements etc.
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Chapter 2 Synthesis and Biological Evaluation of Sulfated Quinazolinone
Monomers, Dimers and Poly-Phenolic Dimers

2.1 Synthesis of the core quinazolinone scaffold

The quinazolinone core structure was formed by a condensation reaction between
anthranilamide and suitably substituted benzaldehyde. Depending on the substitution on
the benzaldehyde, different monomers viz. 1L, 1M, 1N, 10, 1P, 1Q and 1R were formed
respectively. The products were formed in 45 - 65 % yields which decreased with
increasing number of free hydroxyl groups. Standard water-ethyl acetate work up led to
significant precipitation which drastically reduced the yield. With an aim to prevent this
loss during work up two strategies were tried. First, we tried to reduce the volume of the
reaction mixture to 5 ml and directly subjected it to flash chromatography without any
work up. The result was inefficient separation and no improvement in yields. Next was a
‘hot” work up strategy . The reaction was monitored through TLC and once the reaction
was complete, the temperature of the oil bath was reduced to 65° C. Water and ethyl
acetate were added to this hot solution and stirred for 10 minutes. This hot solution was
then transferred to a separating funnel, shaken vigorously and then separated
immediately. The water layer was further given two more washing with hot ethyl acetate

to ensure complete extraction of product. This procedure prevented precipitation and

22
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increased the overall yield to 60%. Another problem encountered was in the separation of

unreacted anthranilamide from the product as they both displayed similar R¢ values. To
counter this the substituted benzaldehyde was taken in slight excess (1.2 equivalents as
compared to 1 equivalent of anthranilamide) to ensure consumption of all the

anthranilamide.

o (o) H (0]
dL NH, o N NaHSO;, DMA @ NH
| - —
NH, P N N
R |
X
R

1 2A : 3-OH 1L : 3-OH
2B : 3,5-OH 1M 3,5-OH
2C : 3-OCHj, 4-OH 1IN : 3-OCHs, 4-OH
2D : 3-OH, 4-OCHj 10 :3-OH, 4-OCH;
2E : 2-OCHj 3-OH, 4-OCH, 1P :3-OCHs 4-OH, 5-OCH;
2F : 2-OH, 4-OH 1Q 1 2-OH, 4-OH
2G : 2,4,6-OH 1R:2,4,6-OH

2.1.2 Protection of quinazolinone monomer

When selecting the protecting group, four important qualities were considered,
viz. stability of the protecting group during other reactions, ease of deprotection, easy
purification and short reaction time. Initially, trimethyl silane (TMS) was used as it
satisfies all the above conditions. However, in the subsequent reactions, TMS was not
found to be stable to potassium carbonate. Thus, diphenyl t-butyl silyl (TBDPS) was
tried, but it suffered from low vyields. Acetyl was later found to be the most effective
protecting group. It has a number of options for deprotection from extremely strong

reagents like 3M hydrochloric acid, mild reagents like lithium hydroxide to extremely
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selective agents like pyrrolidine. Reaction times are longer and yields relatively poorer as

compared to TMS but better than TBDPS. As, the two most important condition were

satisfied, acetyl was the protecting group of choice.

o

@ﬁj\NH Pyridine, Ac,O
/)\O
N N T

1L : 3-OH
1M : 3,5-OH
IN : 3-OCHg, 4-OH

o
CLY
—
N | ~

/\/OAc
2L : 3-OAcC
2M : 3,5-OAc
2N : 3-OCHgs;, 4-OAc

2.1.3 Synthesis of propargylated quinazolinone monomer

This is a simple SN2 type of reaction. The proton attached to ‘N’ is fairly acidic as
the charge is resonance stabilized by the carbonyl group. Thus, it can be readily
abstracted using a base. This then acts as the nucleophile. In this case potassium
carbonate was used as base. Dimethyl formamide (DMF), a polar aprotic solvent is used
to prevent solvation of the nucleophile which could prevent it from displacing the leaving

group, i.e. the bromide.

o) o
K,COg3, Br NN
Lt OO
N | A RT. N/)\©
>0Ac ><0Ac
2L : 3-OAc 3L : 3-OAc
2M : 3,5-OAc 3M : 3,5-OAc

2N : 3-OCHjs, 4-OAc 3N : 3-OCHjs, 4-OAc
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2.1.4 Deacetylation of propargylated quinazolinone monomer

25

Four different conditions were tried for this step. The results are summarized in

the Table 2 below. Note that deacetylation was observed in all four cases.

Reagent

Observed Result

3M HCl / Acetonitrile

Displacement of side chain

K2CO3 / Methanol

Displacement of side chain

Pyrrolidine (neat)

No displacement of side chain but low yield

Lithium hydroxide / THF

Complete deacetylation & no side chain

displacement

First 3M HCI was used but significant deprotection was observed as side-

products. Alkaline conditions such as potassium carbonate in methanol also yielded the

same result. This phenomenon is thought to occur due to resonance stabilization of the

propargyl cation which makes it a good leaving group.

®
® . (> @
/\ - /\\\ < 3 /\/

It was then hypothesized that using mild reagents might prevent this from

occurring. Thus, lithium hydroxide in tetrahydrofuran (THF) was tried. As expected, the

side-chain remained intact along with successful deacetylation. The only problem was

that as the number of hydroxyl groups increased, the reaction time proved to be very

long, 10 — 15 hours. Pyrrolidine which is used for selective deprotection of phenolic
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acetyl groups was hence attempted. The reaction in neat pyrrolidine takes 1-2 minutes as

reported.”” However, the extraction in 3M HCI and ethyl acetate was not efficient and led
to a huge loss in yield. Thus, we utilized lithium hydroxide in THF was used for

preparative purposes.

>0Ac > oH
3L : 3-OAcC 41 : 3-OH
3M: 3,5-OAc 4AM : 3,5-OH
3N : 3-OCHj3, 4-OAc 4N : 3-OCH3, 4-OH

2.1.5 Synthesis of quinazolinone with alkyl chloro side-chain
Similar to the propargylation reaction described in 2.3, this is a true Sy2 type of
reaction. The base used for abstraction of proton was potassium carbonate and solvent

used was dimethyl formamide (DMF).

O K,COs, | o
N” | N R.T. N” | X
>0Ac >0Ac
2L : 3-OAcC 5L : 3-OAcC
2M : 3,5-OAc 5M : 3,5-OAc
2N : 3-OCHjs, 4-OAc 5N : 3-OCHj3, 4-OAc

2.1.6 Conversion of chloro to azide
Two different parameters had to be explored in order to optimize this reaction -
solvent and reaction temperature. The results of solvent manipulation are summarized in

the Table 3 below
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Solvent Outcome
Ethanol No conversion along with deprotection
DMF Complete conversion along with partial deprotection

When ethanol was used as solvent, the chloride could not be displaced, however,

the acetyl protecting groups were lost. Using DMF as an aprotic polar solvent resulted in

the formation of the azide, which was confirmed by its characteristic IR peak at 2100

cm™. But TLC and NMR indicated partial deprotection of the acetyl groups. Thus, to

overcome this phenomenon, the effect of temperature on deacetylation in presence of

azide was studied. The results are summarized in the Table 4 below. Note that the yields

are rough estimates based on TLC results.

Temperature Outcome

100° C Partial deprotection of acetyl group (60%)
90° C Partial deprotection of acetyl group (60%)
80° C Partial deprotection of acetyl group (50%)
70° C Partial deprotection of acetyl group (20%)
60° C No deprotection of acetyl group (0%)

When the reaction was carried out at 60° C, no deprotection of the acetyl group

was observed. Also, since the next reaction has to be deprotection of the acetyl group, it

was logical to exploit higher temperature for azide formation as well as acetyl

deprotection in one step, thus improving synthetic efficiency. We tried to optimize the
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reaction so as to achieve this, however, we were never able to achieve complete

deacetylation. It is assumed that the excess azide is the nucleophile which leads to the
deprotection of the acetyl. The equivalents of the azide, which may account for the
deacetylation, were thus increased to account for all the acetyl moieties, but complete
deprotection was never observed. A complex mixture of fully deprotected, mono and
diacetyl products was formed and was difficult to separate. Hence, both reactions were

carried out separately.

o
@ N NaNs, DMF NS Ns
/\/OAc
5L : 3-OAc 6L : 3-OAc
5M : 3,5-OAc 6M : 3,5-OAc
5N : 3-OCHjs, 4-OAc 6N : 3-OCHjs, 4-OAc

2.1.7 Partial and complete deprotection of quinazolinone azide
This was fairly simple to achieve as compared to the deacetylation of the
propargylated monomer. The partially deprotected monomer was obtained using lithium

hydroxide and THF in 3 hours.

o) o)
N/\/\/Ns LiOH, THF N/\/\/N3

6M
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Complete deprotection of quinazolinone monomer was achieved using 3M HCI.

3M HCI,
@NWN3 ACCN
N” | XN
XOAc
6L : 3-OAcC
6M : 3,5-OAc

6N : 3-OCHjs, 4-OAc

o

~
N A

|
~oH

7L : 3-OH
8M : 3,5-OH
7N : 3-OCHjs, 4-OH

2.1.8 Dimerization of quinazolinone monomers using click chemistry

A number of techniques have been adopted for dimerization of molecules.

However, in case of polyphenols, it has been previously observed that protection-

deprotection strategies prove to be a big hurdle in the formation of the final product.®®

The advantage of “Click” chemistry is that the final dimerization step can be performed

in the presence of free hydroxyl groups. It is for this reason that the click chemistry

approach was used for dimerization.

Click chemistry is a copper catalyzed regioselective cycloaddition reaction

forming the 1,4 — regiomer selectively. A number of different solvent combinations along

with catalyst equivalents were screened in order to optimize the reaction. The results are

summarized in Table 5 below:
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Solvent Combination Catalyst (CuSO4 : Na+ Ascorbate) Outcome
t- BuOH / Water (20:80) | 0.3 eq: 0.5eq No reaction

t- BuOH / Water (30:70) | 0.3 eq:0.5eq No reaction
t-BuOH / Water (50:50) | 0.3 eq:0.5eq No reaction

DMF / Water (30:70) 0.3eq:0.5eq 30 % yield

DMF / Water (50:50) 0.3 eq:0.5eq 50 % yield

DMF / Water (50:50) 0.1eq:0.5eq 80 % yield

Thus, copper catalyzed click reaction with 0.1 equivalents of copper sulfate and
0.5 equivalents of sodium ascorbate was used to dimerize the polyphenolic monomers
without any protection. This reaction was performed at room temperature to ensure the

formation of the 1,4 regioisomer exclusively.

N
0 0 Cuso,, :2/ N LR
©\)LN e~ Ns ©\)LN S Na*Ascorbate . o rz
N” B N7 i N
R

R

R/R
6L : 3-OAc 3L : 3-OAc C1:3-OAc/3-OH
6M : 3,5-OAc 4L : 3-OH C2:3-OH/3-OAc
7L : 3-OH 4M : 3,5-OH C3:3-OH/3-0OH
7M : 3-OH, 5-OAc 4N : 3-OCHgs, 4-OH C4: 3-OAc, 5-OH/ 3-OH
8M : 3,5-OH C5:3-0OH, 5-OH / 3-OH
7N : 3-OCHjs, 4-OH C6 : 3-OH / 3-OH, 5-OH

C7:3-0OAc, 5-OAc / 3-OAc, 5-OAc
C8: 3-OAc, 5-OH / 3-OH, 5-OH
C9: 3-OH, 5-OH / 3-OH, 5-OH
C10: 3-OMe, 4-OH / 3-OMe, 4-OH
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2.1.9 Sulfation of quinazolinone monomers and dimers

Sulfation of the quinazolinone monomers and clicked dimers was achieved using
microwave assisted sulfation reaction in the presence of a base, triethyl amine. For the
first time, we report a non-aqueous method of purification for these sulfated molecules.
Contrary to popular belief, these highly charged molecules can be purified using normal
phase silica gel chromatography. In this case we used flash chromatography. Since the
sulfation reaction is done in the presence of base triethyl amine, the counter ion for the
sulfate group after the reaction is triethyl amine. We hypothesize, it is because of the
charge masking effect of this group that the separation using flash chromatography is
possible. The solvent system wused to make this separation possible was
dichloromethane/methanol (0-20%). This method of purification was used for molecules
with up to four sulfate groups with great ease and efficiency. The development of this
method of purification has increased efficiency and yields in the process of making
sulfated organic molecules. Thus synthesizing a large library of sulfated organic
molecules is now less of a time consuming, labor intensive process. Once purified, the
counter ion was exchanged with sodium to form the more stable sodium salt of the

sulfated organic molecules.
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2.2 Experimental section

2.2.1 General methods

Reagents/chemicals were purchased from Sigma-Aldrich (unless specified
otherwise) and used as supplied. Analytical thin layer chromatography (TLC) was
performed using UNIPLATE™ silica gel GHLF 250 um pre-coated plates (ANALTECH,
Newark, DE) with a fluorescence indicator (254 nm). Flash chromatography was
performed using Combi Flash®Rf flash chromatographer (TELEDYNE ISCO, Lincon,
NE) with pre-packed RediSep®Rf silica gel columns. Microwave-assisted sulfation
reactions were performed using CEM-Discover (Matthews, NC) synthesizer in sealed
reaction vessels (7 ml). The reaction condition was set to ramp to 90°C at 30 W and was
maintained by cooling with nitrogen at 45 psi.

SP Sephadex-Na chromatography (cation exchange) was performed using flex
columns (KIMBLE/KONTES, Vineland, NJ) of dimensions 75 x 1.5 cm. Cation
exchange was performed using 30 fold excess of sodium ion equivalents. Samples were
chromatographed at a controlled flow rate of 0.5 ml/min using water as eluent. Fractions
of 5 ml each were collected and analyzed with a using thin layer chromatography (TLC)
under conditions mentioned above.

'H NMR and **C NMR were recorded on Bruker Ultrashield™ Plus-400MHz
spectrometer in CDCl3, DMSO-dgs, CD30D, CO(CD3), or D,0. All signals were reported
in ppm with residual CDCl3, DMSO-dg, CD30D, CO(CD3), or D,0 signals at 7.26, 2.50,
3.31, 2.05 and 4.79, respectively, as standards. The data is reported as chemical shifts

(ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling
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constant(s) (Hz) and integration. ESI mass spectra were recorded using Waters Acquity

triple quadrupole mass spectrometer. Samples were dissolved in either methanol or 5%
formic acid in water and infused at a rate of 20ul /min. Mass scans were obtained in the
range of 200-1200 amu at a scan rate of 400 amu/sec. lonization conditions were
optimized for each compound to maximize ionization of the parent ion. The capillary
voltage was varied between 3.0 to 5.0 kV, while cone voltage ranged from 28 to 35 V.
For all experiments, the extractor voltage was set to 3.0 V, the Rf lens voltage to 0.1 V,
source block temperature to 150° C and desolvation temperature to 250° C.

Proteins — Human coagulation factors Xa, Ila (a-thrombin) and Xla were
purchased from Haematologic Technologies (Essex Junction, VT). Stock solutions of
proteins were prepared in 20 mM sodium phosphate buffer, pH 7.4, containing 100 mM
NaCl and 2.5 mM CacCl; (thrombin and factor Xla) or 5 mM MES buffer, pH 7.4 (factor
Xa). Chromogenic substrates Spectrozyme TH was purchased from American
Diagnostica (Greenwich, CT) while substrate Chromogenix S-2765 (factor Xa) and

Chromogenix S-2366 was from DiaPharma group, Inc (west Chester, Ohio).
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2.2.2 General procedure for synthesis of quinazolinone core structure

To a solution of anthranilamide 1 (1.0 equiv) in dimethyl acetamide were added
the substituted benzaldehyde 2 (1.3 equiv) and sodium sulfate (1.0 equiv) in a single neck
flask attached with a reflux condenser. The reaction mixture was vigorously stirred and
heated to 145°C. After 24 hours, the hot mixture was extracted with water and ethyl
acetate. The organic extract was dried (Na,SO,), concentrated in vacuo and purified using
flash chromatography on silica gel (10-80% ethyl acetate in hexanes) to give 1A.

2.2.3 General procedure for protection of quinazolinone core structure

1A was then acetylated to protect the free hydroxyl group(s) by solubilizing in
dichloromethane followed by addition of pyridine (2.0 equiv per hydroxyl group) and
acetic anhydride (1.0 equiv per hydroxyl group). This was vigorously stirred at room
temperature and after 10 hours extracted using acidified water and dichloromethane. The
organic layer was dried (Na,SO,), concentrated in vacuo and purified using flash
chromatography on silica gel (10-50% ethyl acetate in hexanes) to give 1B.

2.2.4 General procedure for synthesis of the propargylated quinazolinone monomer

To a solution of 1B in dimethyl formamide add potassium carbonate (1.5 equiv).
Allow this reaction mixture to stir for 2 minutes and add propargyl bromide (1.5 equiv).
After vigorous stirring for 12 hours at room temperature, extraction using water and ethyl
acetate is carried out. The organic layer was dried (Na,SO,), concentrated in vacuo and
purified using flash chromatography on silica gel (10-25% ethyl acetate in hexanes) to

give 1C.
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2.2.5 General procedure for deacetylation of the propargylated quinazolinone

monomer

1C was deacetylated by solubilizing in THF followed by addition of lithium
hydroxide. This reaction mixture was vigorously stirred for 12 hours after which 1D was
obtained by the extraction and purification method mentioned above.
2.2.6 General procedure for addition of chloro alkyl side chain to quinazolinone
scaffold

To a solution of 1B in dimethyl formamide was added potassium carbonate (1.0
equiv) and stirred for two minutes. This was followed by addition of 1-bromo-4-
chlorobutane and vigorous stirring for 12 hours. Extraction and purification by the above
mentioned method yields 1E.
2.2.7 General procedure for conversion of chloro to azide

1E was then solubilized in dimethyl formamide in a flask attached to a reflux
condenser and sodium azide (1.5 equiv) was added to it. The reaction mixture was
vigorously stirred at 60°C to yield 1F after extraction and purification. The formation of
1F was confirmed using IR as azides show characteristic IR peak at 2100 cm™.
2.2.8 General procedure for deacetylation of quinazolinone azide monomer

1F was deacetylated by solubilizing in acetonitrile followed by addition of 3M
HCI. This reaction mixture was refluxed at 80° C for 0.5 hours after which 1G was

obtained by the extraction and purification method mentioned above.
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To obtain the partially deacetylated monomer 1H, it was solubilized in THF,

followed by the addition of LiOH. Vigorous stirring at room temperature for 6 hours
afforded the product.
2.2.9 General procedure for dimerization of quinazolinone monomers using click
chemistry

The monomers 1D (1.0 equiv) and 1G/1H (1.0 equiv) were solubilized in
dimethylformamide. Freshly prepared solution of sodium ascorbate in water (0.5 equiv,
0.1 mM) was added and allowed to stir. After 2 minutes, freshly prepared copper sulfate
solution in water (0.1 equiv, 0.1 mM) was added. The reaction mixture was stirred
vigorously for 12 hours at room temperature followed by extraction and purification to
yield the dimerized quinazolinone 11.
2.2.10 General procedure for sulfation and sodium exchange for monomers and
clicked dimers

11 was solubilized in acetonitrile with tri-ethylamine (6 equiv per hydroxyl group)
in a microwave reaction tube. Sulfur trioxide trimethyl amine (6 equiv per hydroxyl
group) was added and the tube sealed. The reactions parameters for the microwave
reactor were set according to the previously mentioned settings. After 45minutes the
reaction mixture was transferred to a round bottom flask and volume reduced as much as
possible under low pressure conditions at 25°C. The reaction mixture was then directly
loaded on to a flash chromatography column and purified using dichloromethane and

methanol solvent system (0-20%) to obtain the sulfated dimer 1J. This is further
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chromatographed using the cation exchange column mentioned previously to obtain the

sodium salt.

2-(3-hydroxylphenyl)quinazolin-4(3H)-one (1L). Anthranilamide (2.5 g, 18.36 mmol)
and 3-hydroxybenzaldehyde (2.91 g, 23.87 mmol) were dissolved in 25 ml DMA and
reacted as per 2.2.2 to yield 2.39 g (67 % yield). Theoretical yield: 4.37 g. *H NMR
(400MHz, DMSO-d6) & 8.16-8.14 (1H, m), 7.86-7.82 (1H, m), 7.73 (1H, d, J = 8Hz),
7.60-7.58 (2H, m), 7.54-7.50 (1H, m), 7.34 (1H, t, J = 8), 6.99-6.97 (1H, m) (Figure 8).
3C NMR (100MHz, DMSO-d6) & 162.16, 157.45, 152.32, 148.67, 134.58, 133.99,
129.66, 127.41, 126.52, 125.80, 120.93, 118.48, 118.33, 114.51 (Figure 53). ESI (+Ve)
m/z calculated for C14H10N,0, [(M+H)™] 239.24, found 239.14 (Figure 93).
3-(4-0x0-3,4-dihydroquinazolin-2-yl)phenyl acetate (2L). 1L (1.5 g, 6.29 mmol) was
dissolved in 20 ml dichloromethane followed by addition of pyridine (1.01 ml, 12.60
mmol), acetic anhydride (1.2 ml, 12.60 mmol) and reacted as per 2.2.3 to yield 1.1 g (62
% yield). Theoretical yield: 1.76 g.
3-(4-ox0-3-(prop-2-yn-I-yl)-3,4-dihydroquinazolin-2-yl)phenyl acetate (3L). 2L (0.5
g, 1.78 mmol), potassium carbonate (0.36 g, 2.67 mmol) and propargyl bromide
(0.3184g, 2.67 mmol) were dissolved in 5 ml dimethylformamide and reacted as per 2.2.4
to yield 0.4g (70 % vyield). Theoretical yield: 0.57g. *"H NMR (400MHz, CDCls) & 8.41
(1H, d, J = 7.88), 8.23 (1H, t, J = 1.88), 8.14-8.12 (1H, m), 7.92 (1H, d, J = 8.4), 7.79-
7.74 (1H, m), 7.49-7.43 (2H, m), 7.19-7.14 (1H, m), 5.26 (2H, d, J = 2.4), 2.49 (1H, t, J
= 2.4), 2.28 (3H, s) (Figure 9). ESI (+ve) m/z calculated for CigH14N,03 [(M+Na)']

341.33, found 341.16 (Figure 54).
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2-(3-hydroxyphenyl)-3-(prop-2-yn-1-yl)quinazolin-4(3H)-one (4L). 3L (0.3 g, 0.94

mmol), lithium hydroxide (0.079 g, 1.88 mmol) were dissolved in 4 ml THF and reacted
as per 2.2.5 to yield 0.25 g (96 % yield). Theoretical yield: 0.26 g. *H NMR (400MHz,
MeOD) & 8.18-8.16 (1H, m), 8.03-7.95 (3H, m), 7.89-7.87 (1H, m), 7.61-7.57 (1H, m),
7.34 (1H, t, J = 7.92), 6.98-6.95 (1H, m), 5.36 (2H, d, J = 2.44), 3.04 (1H, t, J = 1.64)
(Figure 10). *C NMR (100MHz, MeOD) & 166.93, 161.29, 159.18, 158.75, 153.02,
140.37, 136.89, 136.17, 135.24, 131.12, 130.46, 128.73, 128.47, 128.11, 127.98, 127.65,
124.40, 122.32, 121.04, 118.88, 118.49, 116.34, 116.05, 115.92, 79.39, 79.16, 77.30,
76.68, 74.29, 55.42 (Figure 55).
3-(3-(4-chlorobutyl)-4-oxo-3,4-dihydroquinazolin-2-yl)phenyl acetate (5L). 1L (1.0 g,
3.56 mmol) was solubilized in 10 ml DMF. To this potassium carbonate (0.98 g, 7.09
mmol) along with 1-bromo-4-chlorobutane (0.62, 3.61 mmol) were added and reacted as
per 2.2.6 to yield 1.1 g of 5L (83 % vyield). Theoretical yield: 1.32 g. *H NMR (400MHz,
CDCls) § 8.39 (1H, d, J = 7.92), 8.22 (1H, t, J = 2.04), 8.09-8.07 (1H, m), 7.90 (1H, d, J
= 8.36), 7.77-7.72 (1H, m), 7.47-7.41 (1H, m), 7.16-7.13 (1H, m), 4.68 (2H, t, J = 5.92),
3.61 (2H, t, J = 6.36), 2.08-1.98 (4H, m). (Figure 11). *C NMR (100MHz, CDCls) &
169.45, 166.67, 158.98, 151.83, 151.00, 139.91, 133.58, 129.31, 128.07, 126.63, 125.86,
123.65, 123.39, 121.49, 115.36, 66.11, 44.62, 29.59, 29.45, 26.22 (Figure 56). ESI (+Ve)
m/z calculated for C2oH19CIN,O3 [(M+Na)*] 370.11, found 370.21 (Figure 94).
3-(3-(4-azidobutyl)-4-oxo0-3,4-dihydroquinazolin-2-yl)phenyl acetate (6L). 5L (0.5g,
1.35 mmol) was solubilized in 6 ml DMF. To this sodium azide (0.14 g, 2.02 mmol) was

added and reacted as per 2.2.7 to yield 0.4g of 6L (78 % yield). Theoretical yield: 0.509
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g. 'H NMR (400MHz, CDCls) & 8.38 (1H, d, J = 7.88), 8.21 (1H, t, J = 1.96), 8.07-8.05

(1H, m), 7.89 (1H, d, J = 8.36, 7.76-7.71 (1H, m), 7.46-7.41 (2H, m), 7.17-7.13 (1H, m),
4.65 (2H, t, J = 6.24), 3.34 (2H, t, J = 6.76), 2.27 (3H, s), 2.00-1.93 (2H, m), 1.84-1.81
(2H, m) (Figure 12). *C NMR (100MHz, CDCls) & 169.49, 166.66, 158.96, 151.81,
150.99, 139.90, 133.60, 129.33, 128.06, 126.65, 126.36, 125.86, 123.67, 123.39, 121.49,
115.34, 66.22, 51.15, 26.10, 25.80, 21.21 (Figure 57). ESI (+ve) m/z calculated for
C20H19CIN;O3 [(M+Na) ] 400.40 found 400.21 (Figure 95).
3-(4-azidobutyl)-2-(3-hydroxyphenyl)quinazolin-4(3H)-one (7L). 6L (0.4g, 1.06
mmol) was solubilized in 2 ml acetonitrile followed by addition of 2 ml 3M HCI and
reacted as per 2.2.8 to yield 0.34 g (95 % yield). Theoretical yield: 0.355 g. *H NMR
(400MHz, (CD3),CO) & 8.55 (1H, s), 8.17-8.12 (3H, m), 7.94-7.92 (1H, m), 7.89-7.85
(1H, m), 7.59-7.55 (1H, m), 7.37 (1H, t, J = 7.88), 7.05-7.02 (1H, m) 4.74 (2H, t, J =
6.36), 3.49 (2H, t, J = 6.84), 2.09-2.04 (2H, m), 2.03-1.91 (2H, m) (Figure 13). **C NMR
(100MHz, CDCl3) 6 167.38, 160.37, 158.46, 152.67, 140.51, 134.55, 134.25, 130.50,
130.22, 129.93, 128.69, 128.36, 127.46, 127.17, 126.37, 124.43, 124.18, 120.97, 120.71,
120.39, 118.53, 118.08, 116.39, 116.09, 115.97, 115.79, 68.56, 67.17, 51.80, 26.75, 26.45
(Figure 58).

2-(3,5-dihydroxyphenyl)quinazolin-4(3H)-one (1M). Anthranilamide (2.0 g, 14.6
mmol) and 3,5-dihydroxybenzaldehyde (2.43 g, 11.59 mmol) were dissolved in 20 ml
DMA and reacted as per 2.2.2 to yield 1.43 g (45 % vyield). Theoretical yield: 3.13 g. *H
NMR (400MHz, CD30D) & 8.24-8.21 (1H, m), 7.85-7.52 (1H, m), 7.50 (1H, d, J = 1.2),

7.54-7.50 (1H, m), 6.95 (2H, d, J = 2.12), 6.51 (1H, t, J = 4.36) (Figure 14). **C NMR
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(100MHz, (CD3),CO) & 162.75, 159.76, 159.33, 153.14, 150.17, 136.09, 135.24, 128.60,

127.23, 127.11, 122.41, 107.02 (Figure 59). ESI (+ve) m/z calculated for C14H;9N2O3
[(M+Na)™] 277.24 found 277.12 (Figure 96).
5-(4-oxo0-3,4-dihydroquinazolin-2-yl)-1,3-phenylene diacetate (2M). 1M (1.0 g, 3.93
mmol) was dissolved in 20 ml dichloromethane followed by addition of pyridine (1.27
ml, 15.73 mmol), acetic anhydride (1.49 ml, 15.73 mmol) and reacted as per 2.2.3 to
yield 1.2 g (90 % vyield). Theoretical yield: 1.33 g. '"H NMR (400MHz, DMSO-d6) &
12.51 (1H, s), 8.17-8.15 (1H, m), 7.93 (2H, d, J = 2.08), 7.88-7.84 (1H, m), 7.76 (1H, d,
J=7.72), 7.58-7.54 (1H, m), 7.28 (1H, t, J = 2.08), 2.33 (6H, s) (Figure 15).
5-(4-ox0-3-(prop-2-yn-1-yl)-3,4-dihydroquinazolin-2-yl)-1,3-phenylene diacetate
(3M). 2M (0.4 g, 1.17 mmol), potassium carbonate (0.326 g, 2.35 mmol) and propargyl
bromide (0.28 g, 2.35 mmol) were dissolved in 5 ml dimethylformamide and reacted as
per 2.2.4 to yield 0.33g (75 % yield). Theoretical yield: 0.44g. '"H NMR (400MHz,
CDCls) & 8.14-8.11 (3H, m), 7.91-7.89 (1H, m), 7.79-7.76 (1H, m), 7.50-7.46 (1H, m),
7.00 (1H, t, J = 2.16), 5.24 (2H, d, J = 2.44), 2.49 (1H, t, J = 2.44), 2.27 (6H, s) (Figure
16). *C NMR (100MHz, CDCl3) & 169.00, 165.62, 157.77, 151.85, 151.18, 140.30,
133.93, 128.11, 127.07, 123.52, 118.99, 117.55, 115.14, 115.04, 54.47, 21.15 (Figure
60). ESI (+ve) m/z calculated for C2;H16N,Os [(M+Na)*] 399.36 found 399.19 (Figure
97).

2-(3,5-dihydroxyphenyl)-3-(prop-2-yn-1-yl)quinazolin-4(3H)-one (4M). 3M (0.33 g,
0.75 mmol), lithium hydroxide (0.25 g, 6.06 mmol) were dissolved in 4 ml THF and

reacted as per 2.2.5 to yield 0.20 g (90 % yield). Theoretical yield: 0.22 g. *"H NMR
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(400MHz, CH50D) & 8.19 (1H, d, J = 0.68), 7.96-7.87 (2H, m), 7.62-7.58 (1H, m), 7.52

(2H, d, J = 2.28), 6.45 (1H, t, J = 2.28), 5.37 (2H, d, J = 0.24), 3.03 (1H, s) (Figure 17).
13C NMR (100MHz, CH30D) & 166.86, 161.34, 159.73, 152.99, 141.00, 135.22, 128.46,
128.31, 124.40, 116.07, 106.09, 77.00, 54.79 (Figure 61).
5-(3-(4-chlorobutyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1,3-phenylene diacetate (5M)
1M (0.42 g, 1.23 mmol) was solubilized in 5 ml DMF. To this potassium carbonate (0.34
g, 2.47 mmol) along with 1-bromo-4-chlorobutane (0.31, 1.84 mmol) were added and
reacted as per 2.2.6 to yield 0.45 g of 5M (84 % vyield). Theoretical yield: 0.530 g. 'H
NMR (400MHz, (CDs),CO) & 8.20 (2H, d, J = 2.16), 8.12-8.10 (1H, m), 7.93-7.86 (2H,
m), 7.60-7.56 (1H, m), 7.16 (1H, t, J = 2.24), 4.70 (2H, t, J = 6.04), 3.77 (2H, t, J =
6.32), 2.35 (6H, s), 2.12-2.10 (4H, m). (Figure 18). **C NMR (100MHz, CDCls) &
169.64, 167.59, 158.63, 152.45, 152.38, 141.21, 134.85, 128.74, 128.03, 124.26, 119.68,
118.88, 116.10, 67.31, 45.70, 26.90, 21.15 (Figure 62). ESI (+ve) m/z calculated for
C22H21CIN,Os [(M+Na) ] 451.87, found 451.23 (Figure 98).
5-(3-(4-azidobutyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1,3-phenylene diacetate (6M).
5M (0.31g, 0.74 mmol) was solubilized in 3 ml DMF. To this sodium azide (0.072 g,
1.12 mmol) was added and reacted as per 2.2.7 to yield 0.31g of 6M (96 % yield).
Theoretical yield: 0.32 g. *H NMR (400MHz, CDCls) § 8.13 (2H, d, J = 2.24), 8.08-8.05
(1H, m), 7.88 (1H, d, J = 8.2), 7.76-7.43 (1H, m), 7.47-7.43 (1H, m), 6.99 (1H, t, J =
6.52), 4.64 (2H, t, J = 6.24), 3.32 (2H, t, J = 6.76), 2.26 (6H, s), 2.00-1.93 (2H, m), 1.84-
1.77 (2H, m) (Figure 19). *C NMR (100MHz, CDCls) § 169.03, 166.70, 158.09, 151.80,

151.69, 140.60, 133.68, 133.59, 128.10, 128.00, 126.85, 126.69, 123.41, 118.91, 117.41,
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115.42, 66.31, 66.23, 51.14, 26.07, 25.79, 21.16 (Figure 63). ESI (+ve) m/z calculated

for C2H21NsO5 [(M+Na)*] 458.43 found 458.29 (Figure 99).
3-(3-(4-azidobutyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-5-hydroxyphenyl acetate
(7M). 6M (0.15 g, 0.34 mmol) was solubilized in 2 ml THF followed by addition of
LiOH (0.05 g, 0.034 mM) and reacted as per 2.2.8 to yield 0.1 g (74 % yield). Theoretical
yield: 0.135 g. *H NMR (400MHz, CDCls) § 8.12-8.09 (1H, m), 7.98-7.93 (2H, m), 7.85-
7.79 (2H, m), 7.54-7.50 (1H, m), 6.78 (1H, t, J = 2.24), 6.68 (1H, s), 4.68 (2H, t, J =
6.28), 3.43 (2H, t, J = 6.76), 2.35 (3H, s), 2.07-2.00 (2H, m), 1.91-1.88 (2H, m) (Figure
20). ®C NMR (100MHz, CDCl;) & 169.75, 166.59, 158.95, 156.90, 151.70,151.48,
140.42, 133.69, 127.73, 126.74, 123.38, 115.28, 113.80, 113.19, 111.56, 66.31, 51.13,
26.04, 25.74, 21.21 (Figure 64).
3-(4-azidobutyl)-2-(3,5-dihydroxyphenyl)quinazolin-4(3H)-one (8M). 6L (0.4g, 1.06
mmol) was solubilized in 2 ml acetonitrile followed by addition of 2 ml 3M HCI and
reacted as per 2.2.8 to yield 0.34 g (95 % yield). Theoretical yield: 0.355 g. *H NMR
(400MHz, (CD3),CO) & 8.55 (1H, s), 8.17-8.12 (3H, m), 7.94-7.92 (1H, m), 7.89-7.85
(1H, m), 7.59-7.55 (1H, m), 7.37 (1H, t, J = 7.88), 7.05-7.02 (1H, m) 4.74 (2H, t, J =
6.36), 3.49 (2H, t, J = 6.84), 2.09-2.04 (2H, m), 2.03-1.91 (2H, m) (Figure 21).
2-(4-hydroxy-3-methoxyphenyl)quinazolin-4(3H)-one (1N). Anthranilamide (2.0 g,
14.68 mmol) and 3-hydroxy-4-methoxybenzaldehyde (2.68 g, 17.61 mmol) were
dissolved in 25 ml DMA and reacted as per 2.2.2 to yield 2.83 g (84 % vyield).
Theoretical yield: 3.33 g. '"H NMR (400MHz, CHs;0D) & 8.24-8.21 (1H, m), 7.85-7.83

(1H, m), 7.77-7.72 (2H, m), 7.60-7.57 (1H, m), 7.53-7.49 (1H, m), 6.96 (1H, d, J = 8.36),
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4.00 (1H, s) (Figure 22). 3C NMR (100MHz, CH3;OD) & 162.38, 152.04, 149.93, 148.90,

147.45, 134.47, 127.10, 125.90, 125.78, 123.33, 121.45, 120.52, 115.38, 111.31, 55.75
(Figure 65). ESI (+ve) m/z calculated for Ci15H12N,O3 [(M+H)*] 269.27, found 269.19
(Figure 100).

2-methoxy-4-(4-oxo0-3,4-dihydroquinazolin-2-yl)phenyl acetate (2N). 1N (2.0 g, 7.45
mmol) was dissolved in 20 ml dichloromethane followed by addition of pyridine (1.17 g,
14.90 mmol), acetic anhydride (1.52 ml, 14.90 mmol) and reacted as per 2.2.3 to yield
1.5 g (54 % vyield). Theoretical yield: 2.31 g. '"H NMR (400MHz, DMSO-d6) & 12.60
(1H, s), 8.18-8.16 (1H, m), 7.92 (1H, d, J = 1.88), 7.85-7.83 (2H, m), 7.76 (1H, d, J =
7.92), 7.53 (1H, t, J = 7.2), 7.28 (1H, d, J = 8.32), 3.92 (3H, s), 2.31 (3H, s) (Figure 23).
3C NMR (100MHz, DMSO-d6) & 168.30, 162.21, 151.52, 150.81, 148.62, 141.71,
134.61, 131.30, 127.50, 126.62, 125.82, 123.12, 120.92, 120.55, 112.01, 106.71, 56.07,
20.38 (Figure 66).
2-methoxy-4-(4-oxo0-3-(prop-2-yn-1-yl)-3,4-dihydroquinazolin-2-yl)phenyl  acetate
(3N). 2N (0.18 g, 0.58 mmol), potassium carbonate (0.16 g, 1.16 mmol) and propargyl
bromide (0.10 g, 0.87 mmol) were dissolved in 3 ml dimethylformamide and reacted as
per 2.2.4 to yield 0.19g (95 % yield). Theoretical yield: 0.20g. *H NMR (400MHz,
CDCl3) 8 8.19 (1H, d, J = 1.8), 8.14-8.10 (2H, m), 7.91 (1H, d, J = 8.36), 7.77-7.73 (1H,
m), 7.47-7.43 (1H, m), 7.09 (1H, d, J = 8.28), 5.23 (2H, d, J = 2.4), 3.92 (3H, s), 2.48
(1H, t, J = 2.4), 2.27 (3H, s) (Figure 24). *C NMR (100MHz, CDCls) & 168.84, 165.46,

158.84, 152.01, 151.11, 141.94, 136.75, 133.80, 127.99, 126.71, 123.47, 121.39, 112.42,
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78.22, 75.08, 56.04, 54.28, 20.74 (Figure 67). ESI (+ve) m/z calculated for CyoH16N204

[(M+Na)™] 371.35 found 371.20 (Figure 101).
2-(4-hydroxy-3-methoxyphenyl)-3-(prop-2-yn-1-yl)quinazolin-4(3H)-one (4N). 3N
(0.12 g, 0.34 mmol), lithium hydroxide (0.043 g, 1.03 mmol) were dissolved in 3 ml THF
and reacted as per 2.2.5 to yield 0.09 g (90 % yield). Theoretical yield: 0.10 g. *"H NMR
(400MHz, CO(CDs),) & 8.26 (1H, d, J = 1.92), 8.21-8.15 (2H, m), 7.96-7.89 (2H, m),
7.61-7.57 (1H, m), 6.99 (1H, d, J = 8.32), 5.42 (2H, d, J = 2.44), 3.99 (3H, s), 3.18 (1H,
s) (Figure 25). *C NMR (100MHz, CO(CDs),) & 166.15, 160.22, 153.05, 150.44,
148.31, 134.81, 130.58, 128.55, 127.23, 124.05, 123.26, 115.73, 115.33, 112.46, 79.35,
76.79, 56.60, 56.31, 55.08 (Figure 68).
4-(3-(4-chlorobutyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-2-methoxyphenyl acetate
(5N). IN (0.27 g, 0.87 mmol) was solubilized in 3 ml DMF. To this potassium carbonate
(0.24 g, 1.74 mmol) along with 1-bromo-4-chlorobutane (0.22, 1.30 mmol) were added
and reacted as per 2.2.6 to yield 0.31 g of 5M (91 % vyield). Theoretical yield: 0.34 g. *H
NMR (400MHz, (CD3),CO) & 8.27 (1H, d, J = 0.18), 8.23-8.20 (1H, m), 8.15-8.13 (1H,
m), 7.99 (1H, d, J = 8.36), 7.84-7.80 (1H, m), 7.53-7.49 (1H, m), 7.19 (1H, d, J = 8.28),
4.72 (2H, t, J = 5.92), 4.02 (3H, s), 3.68 (2H, 6.32), 2.38 (3H, s), 2.15-2.11 (4H, m)
(Figure 26). 3C NMR (100MHz, CDCl3) 5 168.84, 166.54, 159.11, 151.81, 151.11,
141.89, 137.03, 133.54, 130.43, 127.95, 127.75, 126.48, 123.39, 122.64, 121.88, 121.34,
115.19, 112.29, 111.65, 66.02, 65.88, 60.38, 56.06, 44.79, 44.66, 44.48, 29.25, 26.23,
20.74, 20.64 (Figure 69). ESI (+ve) m/z calculated for C,;H21CIN,O4 [(M+H)'] 401.86,

found 401.23 (Figure 102).
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4-(3-(4-azidobutyl)-4-oxo0-3,4-dihydroquinazolin-2-yl)-2-methoxyphenyl acetate

(6N). 5N (0.2g, 0.49 mmol) was solubilized in 3 ml DMF. To this sodium azide (0.048 g,
0.99 mmol) was added and reacted as per 2.2.7 to yield 0.18g of 6N (90 % yield).
Theoretical yield: 0.203 g.
3-(4-azidobutyl)-2-(4-hydroxy-3-methoxyphenyl)quinazolin-4(3H)-one ~ (7N). 6N
(0.15g, 0.36 mmol) was solubilized in 2 ml acetonitrile followed by addition of 1.5 ml 3
M HCI and reacted as per 2.2.8 to yield 0.1 g (76 % yield). Theoretical yield: 0.13 g. *H
NMR (400MHz, CO(CDs),) & 8.24 (1H, d, J = 1.84), 8.20-8.17 (2H, m), 7.93-7.86 (2H,
m), 7.57 (1H, t, J = 7.52), 6.38 (1H, d, J = 8.28), 4.81 (2H, t, J = 6.32), 3.53 (2H, t, J =
6.8), 2.13-2.05 (4H, m) (Figure 27). *C NMR (100MHz, CO(CDs),) 5 167.28, 160.46,
152.92, 150.33, 148.27, 134.51, 130.90, 128.49, 126.94, 1 24.21, 123.22, 115.70, 115.66,
112.36, 67.09, 56.32, 51.81 (Figure 70).
2-(3-hydroxy-4-methoxyphenyl)quinazolin-4(3H)-one (10). Anthranilamide (1.0 g,
7.34mmol) and 3-hydroxy-4-methoxybenzaldehyde (1.45 g, 9.53 mmol) were dissolved
in 20 ml DMA and reacted as per 2.2.2 to yield 1.1 g (57 % vyield). Theoretical yield:
192¢

2-(4-hydroxy-3,5-dimethoxyphenyl)quinazolin-4(3H)-one (1P). Anthranilamide (0.5 g,
3.67 mmol) and 4-hydroxy-3,5-dimethoxybenzaldehyde (0.86 g, 4.40 mmol) were
dissolved in 15 ml DMA and reacted as per 2.2.2 to yield 0.6 g (55 % vyield). Theoretical
yield: 1.09 g.

2-(2,4-dihydroxyphenyl)quinazolin-4(3H)-one (1Q). Anthranilamide (0.5 g, 3.67

mmol) and 4-hydroxy-3,5-dimethoxybenzaldehyde (0.67 g, 4.40 mmol) were dissolved in
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15 ml DMA and reacted as per 2.2.2 to yield 0.62 g (66 % vyield). Theoretical yield: 0.93

g

2-(2,4,6-trihydroxyphenyl)quinazolin-4(3H)-one (1R). Anthranilamide (0.5 g, 3.67
mmol) and 2,4,6-trihydroxybenzaldehyde (0.74 g, 4.77 mmol) were dissolved in 15 ml
DMA and reacted as per 2.2.2 to yield 0.07 g (7 % yield). Theoretical yield: 0.99 g. *H
NMR (400MHz, CDCl3) 6 9.50 (1H, s), 8.22 (1H, d, J = 1.08), 8.21-7.66 (2H, m), 7.43-
7.39 (1H, m), 6.10 (2H, s) (Figure 28).
3-(3-(4-(4-((2-(3-hydroxyphenyl)-4-oxoquinazolin-3(4H)-yl)methyl)-1H-1,2,3-triazol-
1-yl)butyl)-4-ox0-3,4-dihydroquinazolin-2-yl)phenyl acetate (C1). 6L (0.224 g,
0.5935 mM) and 4L (0.164 g, 0.5935 mM) were solubilized in DMF followed by
addition of sodium ascorbate (0.06, 0.2967 mM) and CuSQO, (0.044 mg, 0.1780 mM) and
reacted as per 2.2.9 to yield 0.32 g (82 % yield). Theoretical yield: 0.38 g. *H NMR
(400MHz, CO(CDs),) & 8.40 (1H, d, J = 7.88), 8.29-8.13 (5H, m), 7.88-7.76 (4H, m),
7.53-7.24 (6H, m), 7.06-7.04 (1H, m), 5.83 (2H, s), 4.60-4.55 (4H, m), 2.32 (3H, s), 2.19-
2.16 (2H, m), 1.95-1.91 (2H, m) (Figure 29). *C NMR (100MHz, CO(CDs)) & 169.95,
167.36, 166.81, 163.15, 160.11, 159.33, 158.65, 152.69, 152.40, 152.20, 143.76, 140.55,
140.29, 134.66, 134.63, 130.34, 130.14, 128.65, 127.69, 127.50, 126.48, 125.18, 124.85,
12419, 124.16, 122.37, 120.67, 118.71, 116.18, 115.91, 115.78, 67.09, 61.00, 50.59,
27.86, 26.55 (Figure 71). ESI (+ve) m/z calculated for Ca7H31N;Os [(M+H)"] 654.69,
found 654.44 (Figure 103).
3-(3-((1-(4-(2-(3-hydroxyphenyl)-4-oxoquinazolin-3(4H)-yl)butyl)-1H-1,2,3-triazol-4-

yl)methyl)-4-oxo-3,4-dihydroquinazolin-2-yl)phenyl acetate (C2). 7L (0.224 g, 0.5935

www.manaraa.com



49
mM) and 3L (0.164 g, 0.5935 mM) were solubilized in DMF followed by addition of

sodium ascorbate (0.06, 0.2967 mM) and CuSO, (0.044 mg, 0.1780 mM) and reacted as
per 2.2.9 to yield 0.28 g (80 % yield). Theoretical yield: 0.38 g. *H NMR (400MHz,
CO(CD3),) 6 8.40 (1H, d, J = 7.88), 8.29-8.13 (5H, m), 7.88-7.76 (4H, m), 7.53-7.24 (6H,
m), 7.06-7.04 (1H, m), 5.83 (2H, s), 4.60-4.55 (4H, m), 2.32 (3H, s), 2.19-2.16 (2H, m),
1.95-1.91 (2H, m) (Figure 30).
2-(3-hydroxyphenyl)-3-((1-4-(2-(3-hydroxyphenyl)-4-oxoquinazolin-3(4H)-yl)butyl)-
1H-1,2,3-triazol-4-yl)methyl)quinazolin-4(3H)-one (3C). 7L (0.15 g, 0.4474 mM) and
4L (0.14 g, 0.4474 mM) were solubilized in DMF followed by addition of sodium
ascorbate (0.04, 0.2237 mM) and CuSO, (0.033 mg, 0.1342 mM) and reacted as per 2.5.9
to yield 0.2 g (74 % yield). Theoretical yield: 0.27 g. *"H NMR (400MHz, DMSO d-6) &
8.39 (1H, s), 8.13-8.02 (2H, m), 8.01-7.95 (2H, m), 7.94-7.91 (6H, m), 7.62-7.57 (2H,
m), 7.36-7.31 (2H, m), 6.95-6.91 (2H, m), 5.83 (2H, s), 4.69 (2H, t, J = 4), 4.53 (2H, t, J
=8), 2.14-2.08 (2H, m), 1.91-1.88 (2H, m) (Figure 31). **C NMR (100MHz, DMSO d-6)
o 166.06, 165.61, 158.96, 158.82, 157.57, 157.52, 151.24, 151.10, 142.13, 138.74,
134.27, 134.10, 129.52, 129.45, 127.56, 127.52, 127.06, 126.95, 124.65, 123.21, 119.08,
118.99, 117.92, 117.83, 114.75, 114.71, 114.52, 114.40, 65.97, 59.90, 49.18, 48.56,
26.51, 25.30. (Figure 72). ESI (+ve) m/z calculated for CssHN704 [(M+H)"] 612.65,
found 612.49 (Figure 104).
3-hydroxy-5-(3-(4-(4-((2-(3-hydroxyphenyl)-4-oxoquinazolin-3(4H)-yl)methyl)-1H-
1,2,3-triazol-1-yl)butyl)-4-oxo-3,4-dihydroquinazolin-2-yl)phenyl acetate (4C). 7M

(0.12 mg, 0.3126 mM) and 4L (0.086 mg, 0.3126 mM) were solubilized in DMF
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followed by addition of sodium ascorbate (0.031 mg, 0.1563 mM) and CuSQO, (0.023 mg,

0.0937 mM) and reacted as per 2.2.9 to yield 0.16 g (76 % yield). Theoretical yield: 0.20
g. 'H NMR (400MHz, MeOD) & 8.06 (1H, s), 7.92-7.90 (1H, m), 7.86-7.81 (3H, m), 7.73
(2H, s), 7.69-7.63 (3H, m), 7.54-7.53 (1H, m), 7.35-7.31 (2H, m), 7.16 (1H, t, J = 7.84),
7.11 (1H, s), 6.81-6.78 (1H, m), 6.54 (1H, t, J = 2.24), 5.66 (2H, s), 4.43-4.39 (4H, m),
3.21-3.19 (2H, m), 2.16 (3H, s), 2.05-1.98 (2H, m), 1.79-1.72 (2H, m) (Figure 32). *C
NMR (100MHz, MeOD) 6 171.18, 167.84, 167.31, 161.11, 160.38, 159.58, 158.77,
153.27, 152.92, 152.68, 144.47, 141.33, 140.37, 135.11, 134.98, 130.54, 128.45, 128.37,
128.03, 127.98, 125.90, 124.47, 124.43, 120.91, 118.83, 116.28, 116.11, 113.95, 113.86,
112.29, 67.37, 60.88, 30.68, 27.92, 26.80 (Figure 73). ESI (+ve) m/z calculated for
Cs7HaiN7Og [(M+H)™] 670.69, found 670.45 (Figure 105).
2-(3,5-dihydroxyphenyl)-3-(4-(4-((2-(3-hydroxyphenyl)-4-oxoquinazolin-3(4H)-
yl)methyl)-1H-1,2,3-triazol-1-yl)butyl)quinazolin-4(3H)-one (5C). 8M (89 mg, 0.25
mM) and 4L (79 mg, 0.2533 mM) were solubilized in DMF followed by addition of
sodium ascorbate (30 mg, 0.1519 mM) and CuSO, (12.6 mg, 0.0506 mM) and reacted as
per 2.2.9 to yield 0.12 g (72 % yield). Theoretical yield: 0.16 g. *H NMR (400MHz,
MeOD) & 8.32 (2H, t, J = 1.72), 8.13 (1H, s), 7.98-7.70 (6H, m), 7.42-7.34 (4H, m), 6.88
(2H, d, J = 8.72), 6.43 (1H. t, J = 2.28), 5.74 (2H, s), 4.51 (4H, t, J = 6.52), 2.16-2.09
(2H, m), 1.88-1.83 (2H, m) (Figure 33). **C NMR (100MHz, MeOD) & 167.63, 167.11,
164.86, 161.49, 161.32, 159.68, 152.97, 152.64, 144.53, 141.20, 134.97, 134.83, 131.46,

130.26, 128.22, 127.90, 127.74, 127.32, 125.80, 124.45, 124.38, 116.28, 108.25, 106.09,

www.manaraa.com



51
67.27, 60.77, 36.96, 31.67 (Figure 74). ESI (+ve) m/z calculated for CssH27N7Os

[(M+H)"] 628.65, found 628.46 (Figure 106).
2-(3,5-dihydroxyphenyl)-3-((1-(4-(2-(3-hydroxyphenyl)-4-oxoquinazolin-3(4H)-
yl)butyl)-1H-1,2,3-triazol-4-yl)methyl)quinazolin-4(3H)-one (6C). 7M (0.08 mg,
0.2394 mM) and 4M (0.07 mg, 0.2394 mM) were solubilized in DMF followed by
addition of sodium ascorbate (0.023 g, 0.1197 mM) and CuSO, (0.017 g, 0.0718 mM)
and reacted as per 2.2.9 to yield 0.09 g (60 % yield). Theoretical yield: 0.15 g. *"H NMR
(400MHz, MeOD) & 8.14 (1H, s), 7.94-7.84 (4H, m), 7.79-7.69 (4H, m), 7.48 (2H, d, J =
2.24),7.39-7.34 (2H, m), 7.25 (1H, t, J = 8.16), 6.90-6.88 (1H, m), 6.45 (1H, t, J = 2.28),
5.70 (2H, s), 4.49 (4H, t, J = 6.56), 2.13-2.08 (2H, m), 1.88-1.84 (2H, m) (Figure 34).
3C NMR (100MHz, MeOD) 6 167.69, 167.10, 161.34, 161.02, 159.77, 158.62, 152.76,
152.60, 144.41, 141.01, 140.50, 135.00, 134.86, 130.45, 128.25, 128.17, 127.86, 127.77,
125.90, 124.39, 120.96, 118.71, 116.32, 116.06, 116.01, 108.20, 106.17, 67.30, 60.78,
51.25, 27.94, 26.82 (Figure 75). ESI (+ve) m/z calculated for CssHyoN;Os [(M+H)']
628.65, found 628.42 (Figure 107).
5-(3-((2-(4-(2-(3,5-diacetoxyphenyl)-4-oxoquinazolin-3(4H)-yl)butyl)-1H-1,2,3-
triazol-4-yl)methyl)-4-oxo0-3,4-dihydroquinazolin-2-yl)-1,3-phenylene diacetate (7C).
6M (65 mg, 0.15 mM) and 4H (56.18 mg, 0.15 mM) were solubilized in DMF followed
by addition of sodium ascorbate (14.77 mg, 0.0746 mM) and CuSQO, (11.15 mg, 0.0447
mM) and reacted as per 2.2.9 to yield 0.01 g (8.3 % yield). Theoretical yield: 0.1211 g.
'H NMR (400MHz, MeOD) & 8.27 (1H, s), 8.17-8.11 (5H, m), 8.02-7.87 (6H, m), 7.56-

7.53 (2H, m), 7.08-7.04 (2H, m), 5.82 (2H, s), 4.60-4.50 (5H, m), 2.33 (12H, d, J = 8),
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2.18-2.04 (2H, m), 1.87-1.84 (m, 2H) (Figure 35). ESI (+ve) m/z calculated for

Ca3H37N7010 [(M+Na)*] 834.79, found 834.54 (Figure 108).
3-(3-(4-(4-((2-(3,5-dihydroxyphenyl)-4-oxoquinazolin-3(4H)-yl)methyl)-1H-1,2,3-
triazol-1-yl)butyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-5-hydroxyphenyl acetate (8C).
7M (40.3 mg, 0.10 mM) and 4H (30 mg, 0.1026 mM) were solubilized in DMF followed
by addition of sodium ascorbate (12.18 mg, 0.0615 mM) and CuSO, (5.12 mg, 0.0205
mM) and reacted as per 2.2.9 to yield 0.04 g (57 % yield). Theoretical yield: 0.07 g. *H
NMR (400MHz, MeOD) § 8.12 (1H, s), 7.96 (2H, t, J = 8.84), 7.78-7.70 (5H, m), 7.56
(1H, t, J = 1.88), 7.40-7.39 (4H, m), 6.55 (1H, t, J = 2.2), 6.32 (1H, t, J = 2.24), 5.71 (2H,
s), 4.73-4.44 (4H, m), 2.20 (3H, s), 2.09-2.05 (2H, m), 1.84-1.80 (2H, m) (Figure 36).
C NMR (100MHz, MeOD) § 171.21, 167.97, 167.28, 161.21, 160.48, 159.81, 159.61,
153.29, 152.94, 152.76, 144.48, 141.36, 141.03, 135.13, 135.04, 128.48, 128.37, 128.11,
127.99, 125.99, 124.49, 116.35, 116.17, 113.95, 113.86, 112.29, 108.17, 106.15, 67.41,
60.84, 27.93, 26.84, 21.01 (Figure 76). ESI (+ve) m/z calculated for Csz;H31N;O;
[(M+H)"] 686.68, found 686.51 (Figure 109).
2-(3,5-dihydroxyphenyl)-3-((1-(4-(2-(3,5-dihydroxyphenyl)-4-oxoquinazolin-
3(4H)yl)butyl)-1H-1,2,3-triazol-4-yl)methyl)quinazolin-4(3H)-one (9C). 8M (0.08 g,
0.2326 mM) and 4M (0.068 g, 0.2326 mM) were solubilized in DMF followed by
addition of sodium ascorbate (0.027 g, 0.1395 mM) and CuSO, (0.029 mg, 0.1163 mM)
and reacted as per 2.2.9 to yield 0.06 g (40 % yield). Theoretical yield: 0.14 g. *"H NMR
(400MHz, MeOD) & 8.19 (1H, s), 8.02-7.98 (3H, m), 7.82-7.78 (4H, m), 7.47-7.26 (7H,

m), 6.43-6.41 (2H, m), 5.77 (2H, s), 4.56-4.54 (4H, m), 2.16 (2H, s), 1.90 (2H, s) (Figure
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37). ®C NMR (100MHz, MeOD) & 167.81, 167.24, 164.87, 161.42, 161.07, 159.77,

159.69, 152.70, 152.27, 144.45, 140.90, 140.85, 135.11, 135.04, 128.19, 127.98, 127.93,
125.96, 124.48, 117.22, 116.12, 116.07, 108.23, 108.17, 106.18, 67.44, 60.83, 51.25,
27.91, 26.82 (Figure 77). ESI (+ve) m/z calculated for CasHooN;Og [(M+H)"] 644.65,
found 644.43 (Figure 110).
2-(4-hydroxy-3-methoxyphenyl)-3-((1-(4-(2-(4-hydroxy-3-methoxyphenyl)-4-
oxoquinazolin-3(4H)-yl)butyl)-1H-1,2,3-triazol-4-yl)methyl)quinazolin-4(3H)-one
(10C). 7N (0.10 g, 0.2938 mM) and 4N (0.09 g, 0.2938 mM) were solubilized in DMF
followed by addition of sodium ascorbate (0.034 g, 0.1762 mM) and CuSO, (0.036 g,
0.1469 mM) and reacted as per 2.2.9 to yield 0.05 g (25 % yield). Theoretical yield:
0.197 g. *H NMR (400MHz, MeOD) & 8.24-8.20 (1H, m), 8.09-8.04 (4H, m), 7.88-7.72
(5H, m), 7.53-7.44 (2H, m), 6.98-6.90 (2H, m), 5.81 (2H, s), 4.63-4.57 (2H, m), 4.14-
4.09 (2H, m), 3.97 (6H, s), 2.23-2.19 (2H, m), 1.98-1.92 (2H, m) (Figure 38). *C NMR
(100MHz, MeOD) & 165.04, 164.63, 157.86, 157.63, 150.37, 150.31, 149.74, 149.40,
142.95, 142.28, 142.16, 134.29, 134.18, 133.67, 133.45, 126.37, 126.16, 125.71, 125.56,
124.38, 122.40, 121.59, 120.91, 113.39, 113.31, 111.94, 65.77, 55.67, 55.63, 50.09,
42.42, 26.23, 25.01 (Figure 78).

3-(4-oxo0-3,4-dihydroquinazolin-2-yl)phenyl sulfate (1S). 1L (0.05 g, 0.2098 mM), was
solubilized in 3 ml acetonitrile followed by addition of triethylamine (0.18 ml, 1.2592
mM) and SO3MesN (0.175 g, 1.2592 mM) and allowed to react as per 2.2.10 to yield 0.05
g (75 % yield). Theoretical yield: 0.066 g. *H NMR (400MHz, D,0) & 7.89-7.87 (1H, m),

7.69-7.63 (3H, m), 7.56-7.52 (1H, m), 7.48-7.45 (2H, m), 7.36 (1H, t, J = 7.8) (Figure
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39). *C NMR (100MHz, D,0) & 151.41, 135.56, 133.50, 130.56, 127.52, 125.74, 125.40,

124.97, 120.78, 119.42 (Figure 79). ESI (-ve) m/z calculated for C14HgN,OsS™ [(M)]
317.30, found 317.17 (Figure 111).
5-(4-oxo0-3,4-dihydroquinazolin-2-yl)-1,3-phenylene bis(sulfate) (2S). 1M (0.05 g,
0.1966 mM), was solubilized in 3 ml acetonitrile followed by addition of triethylamine
(0.32 ml, 2.3599 mM) and SO3zMesN (0.328 g, 2.3599 mM) and allowed to react as per
2.2.10 to yield 0.06 g (74 % yield). Theoretical yield: 0.081 g. *H NMR (400MHz, D,0)
§ 8.13-8.11 (1H, m), 7.86-7.82 (1H, m), 7.72-7.68 (3H, m), 7.54 (1H, t, J = 8), 7.48 (1H,
t, J = 2.16) (Figure 40). *C NMR (100MHz, D,0) & 152.17, 135.76, 134.72, 127.81,
125.96, 118.56, 118.31 (Figure 80). ESI (-ve) m/z calculated for Ci4HgN20gS,™
[(M+Na)*] 435.35, found 435.10 (Figure 112).
2-methoxy-4-(4-ox0-3,4-dihydroquinazolin-2-yl)phenyl sulfate (3S). 1N (0.05 g,
0.1863 mM), was solubilized in 3 ml acetonitrile followed by addition of triethylamine
(0.16 ml, 1.1182 mM) and SO3zMe3N (0.15 g, 1.1182 mM) and allowed to react as per
2.2.10 to yield 0.05 g (80 % yield). Theoretical yield: 0.064 g. *H NMR (400MHz, D,0)
§7.96 (1H, d, J =8), 7.71 (1H, t, = 7.76), 7.53 (1H, d, J = 8.2), 7.47-7.35 (4H, m), 3.90
(3H, s) (Figure 41). *C NMR (100MHz, D,0) & 151.45, 142.88, 135.63, 130.40, 127.48,
125.86, 122.82, 120.64, 119.49, 112.57, 56.27 (Figure 81). ESI (-ve) m/z calculated for
C1sH11N206S™ [(M)] 347.32, found 347.16 (Figure 113).
2-methoxy-5-(4-oxo-3,4-dihydroquinazolin-2-yl)phenyl sulfate (4S). 10 (0.05 g,
0.1863 mM), was solubilized in 3 ml acetonitrile followed by addition of triethylamine

(0.16 ml, 1.1182 mM) and SO3zMesN (0.15 g, 1.1182 mM) and allowed to react as per
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2.2.10 to yield 0.045 g (70 % yield). Theoretical yield: 0.064 g. '"H NMR (400MHz, D,0)

§ 7.70-7.68 (1H, m), 7.60-7.54 (2H, m), 7.45-7.42 (1H, m), 7.34 (1H, d, J = 8.12), 7.24-
7.20 (1H, m), 6.95 (1H, d, J = 8.8), 3.78 (3H, s) (Figure 42). *C NMR (100MHz, D,0) &
154.27, 139.79, 135.42, 127.07, 126.69, 125.60, 123.91, 121.70, 118.89, 113.17, 56.08
(Figure 82). ESI (-ve) m/z calculated for Ci5sH11N>,OsS™ [(M)] 347.32, found 347.16
(Figure 114).

2,6-dimethoxy-4-(4-oxo-3,4-dihydroquinazolin-2-yl)phenyl sulfate (5S). 1P (0.05 g,
0.1676 mM), was solubilized in 3 ml acetonitrile followed by addition of triethylamine
(0.14 ml, 1.0056 mM) and SO3Me3N (0.14 g, 1.0056 mM) and allowed to react as per
2.2.10 to yield 0.035 g (55 % yield). Theoretical yield: 0.063 g. '"H NMR (400MHz, D,0)
§7.90 (1H, d, J = 0.92), 7.65 (1H, t, J = 1.36), 7.63 (1H, d, J = 1.36), 7.36 (1H, t, J =
7.24),7.04 (2H, s), 3.86 (6H, s) (Figure 43). 3C NMR (100MHz, D,0) & 154.24, 135.52,
132.18, 129.95, 127.47, 125.74, 119.42, 105.18, 56.44 (Figure 83). ESI (-ve) m/z
calculated for C16H13N,07S™ [(M)] 377.35, found 377.17 (Figure 115).
4-(4-oxo0-3,4-dihydroquinazolin-2-yl)-1,3-phenylene bis(sulfate) (6S). 1Q (0.05 g,
0.1966 mM), was solubilized in 3 ml acetonitrile followed by addition of triethylamine
(0.32 ml, 2.3599 mM) and SO3zMesN (0.328 g, 2.3599 mM) and allowed to react as per
2.2.10 to yield 0.06 g (74 % yield). Theoretical yield: 0.081 g. *H NMR (400MHz, D,0)
8 7.94 (1H, s), 7.79-7.72 (2H, m), 7.52-7.38 (4H, m) (Figure 44). *C NMR (100MHz,
D,0) 6 154.18, 149.45, 135.61, 131.95, 127.73, 126.00, 125.85, 119.45, 116.27, 55.61,
42.50, 38.73 (Figure 84). ESI (-ve) m/z calculated for C14HgN»0¢S,? [(M+Na)*] 435.35,

found 435.16 (Figure 116).
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2-(4-oxo0-3,4-dihydroquinazolin-2-yl)benzene-1,3,5-triyl tris(sulfate) (7S). 1R (0.05 g,

0.1850 mM), was solubilized in 3 ml acetonitrile followed by addition of triethylamine
(0.46 ml, 3.3303 mM) and SO3zMesN (0.463 g, 3.3303 mM) and allowed to react as per
2.2.10 to yield 0.06 g (53 % yield). Theoretical yield: 0.093 g. *H NMR (400MHz, D,0)
8 (Figure 45). °C NMR (100MHz, D,O) & 163.47, 162.28, 155.63, 154.40, 143.92,
135.33, 126.61, 125.27, 123.44, 118.05, 98.16, 55.58 (Figure 85).
3-(3-(4-(4-((2-(3-acetoxyphenyl)-4-oxoquinazolin-3(4H)-yl)methyl)-1H-1,2,3-triazol-
1-yhbutyl)-4-oxo0-3,4-dihydroquinazolin-2-yl)phenyl sulfate (CS2). C2 (0.05 g, 0.0765
mM), was solubilized in 3 ml acetonitrile followed by addition of triethylamine (0.04 ml,
0.4592 mM) and SOzMe3N (0.063 g, 0.4592 mM) and allowed to react as per 2.2.10 to
yield 0.05 g (89 % yield). Theoretical yield: 0.056 g. *H NMR (400MHz, D,0) & 8.39-
8.37 (1H, m), 8.33 (1H, s), 8.26 (1H, t, J = 1.92), 8.20 (1H, t, J = 1.96), 8.16-8.15 (1H,
m), 8.02 (2H, d, J = 8.16), 7.89-7.82 (4H, m), 7.55-7.50 (3H, m), 7.41-7.30 (2H, m),
7.24-7.21 (1H, m), 5.76 (2H, s), 4.61 (2H, t, J = 6.4), 4.64 (2H, t, J = 6.96), 2.07-2.03
(2H, m), 1.84 (2H, s) (Figure 46). **C NMR (100MHz, D,0) & 169.29, 166.11, 165.81,
158.70, 157.85, 153.85, 151.10, 150.82, 142.04, 138.84, 138.36, 134.40, 134.11, 129.69,
128.81, 127.58, 127.38, 126.98, 125.46, 124.80, 124.22, 123.27, 123.20, 123.16, 122.95,
121.29, 120.44, 114,51, 114.50 (Figure 86). ESI (-ve) m/z calculated for C37H3N;OgS’
[(M)] 732.74, found 732.38 (Figure 117).
3-(3-((1-(4-(2-(3-phenylsulfate)-4-oxoquinazolin-3(4H)-yl)butyl)-1H-1,2,3-triazol-4-
yl)methyl)-4-oxo0-3,4-dihydroquinazolin-2-yl)phenyl sulfate (CS3). C3 (0.09 g, 0.1308

mM), was solubilized in 3 ml acetonitrile followed by addition of triethylamine (0.2ml,
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1.5706 mM) and SOsMesN (0.2 g, 1.5706 mM) and allowed to react as per 2.2.10 to yield

0.08 g (70 % vyield). Theoretical yield: 0.113 g. 'H NMR (400MHz, D,0) & 7.53-6.53
(16H, m), 5.11 (2H, s), 4.24 (2H, s), 3.62 (2H, s), 1.65 (2H, s), 1.26 (2H, s) (Figure 47).
3¢ NMR (100MHz, D,0) & 154.62, 151.52, 151.37, 151.02, 149.67, 149.38, 145.07,
142.68, 142.42, 138.21, 138.08, 136.39, 134.55, 133.70, 133.54, 130.28, 129.57, 127.21,
126.54, 126.31, 125.64, 125.31, 125.07, 124.33, 123.18, 122.26, 122.08, 121.17, 120.83,
119.94, 118.94, 113.42, 113.32, 65.92, 59.25, 55.53, 50.04, 39.56, 26.28, 25.00 (Figure
87). ESI (-ve) m/z calculated for CasHy7N7010S,? [(M+Na)] 792.76, found 792.36
(Figure 118).

3-(3-((1-(4-(2-(3-acetoxy-5-phenylsulfate)-4-oxoquinazolin-3(4H)-yl)butyl)-1H-1,2,3-
triazol-4-yl)methyl)-4-oxo-3,4-dihydroquinazolin-2-yl)phenyl sulfate (CS4). C4 (0.06
g, 0.0895 mM), was solubilized in 3 ml acetonitrile followed by addition of triethylamine
(0.125 ml, 1.0751 mM) and SO3zMesN (0.150 g, 1.0751 mM) and allowed to react as per
2.2.10 to yield 0.05 g (64 % vyield). Theoretical yield: 0.074 g. *"H NMR (400MHz, D,0)
§ 7.97 (1H, s), 7.87 (1H, s), 7.58-7.53 (2H, m), 7.24-6.99 (9H, m), 6.74-6.59 (3H, m),
5.25 (2H, s), 4.33 (2H, t, J = 5.96), 3.70-3.65 (2H, m), 2.23 (3H, s), 1.72 (2H, s), 1.32
(2H, s) (Figure 48). 3C NMR (100MHz, D,0) § 172.29, 165.30, 165.09, 157.94, 157.09,
151.76, 151.51, 150.50, 149.65, 149.31, 142.83, 139.07, 138.07, 133.82, 129.67, 126.72,
125.74, 125,64, 125.30, 123.59, 122.46, 122.17, 120.87, 118.43, 118.24, 116.86, 113.57,
113.47, 65.96, 59.15, 55.49, 50.14, 26.23, 25.01, 20.54 (Figure 88). ESI (-ve) m/z

calculated for C57H2oN701,S,7 [(M+Na)] 850.80, found 850.39 (Figure 119).
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5-(3-(4-(4-((2-(3-phenylsulfate)-4-oxoquinazolin-3(4H)-yl)methyl)-1H-1,2,3-triazol-1-

yl)butyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1,3-phenylene bis(sulfate) (CS5). C5
(0.05 g, 0.0792 mM), was solubilized in 3 ml acetonitrile followed by addition of
triethylamine (0.2 ml, 1.4263 mM) and SO3MesN (0.2 g, 1.4263 mM) and allowed to
react as per 2.2.10 to yield 0.055 g (80 % yield). Theoretical yield: 0.068 g. *H NMR
(400MHz, D,0) & 8.52-8.50 (2H, m), 8.33-8.31 (3H, m), 8.02-7.97 (2H, m), 7.83-7.77
(4H, m), 7.48-7.44 (5H, m), 5.77 (2H, s), 4.62-4.57 (4H, m), 2.20-2.14 (2H, m), 1.96-
1.91 (2H, m) (Figure 49). *C NMR (100MHz, D,0) & 167.93, 167.39, 160.51, 159.86,
156.45, 154.71, 152.91, 152.73, 144.29, 141.07, 135.32, 135.23, 135.12, 130.83, 128.62,
128.35, 128.28, 128.02, 126.18, 124.58, 124.53, 122.06, 118.89, 118.09, 116.27, 115.90,
67.63, 61.01, 28.13, 26.93 (Figure 89). ESI (-ve) m/z calculated for CasHysN7014S5>
[(M-SO3)] 786.82, found 786.33 (Figure 120).

5-(3-((1-(4-(2-(3-acetoxy-5-phenylsulfate)-4-oxoquinazolin-3(4H)-yl)butyl)-1H-1,2,3-
triazol-4-yl)methyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1,3-phenylene bis(sulfate)
(CS7). C7 (0.01 g, 0.0178 mM), was solubilized in 3 ml acetonitrile followed by addition
of triethylamine (0.04 ml, 0.3215 mM) and SOsMesN (0.44 g, 0.3215 mM) and allowed
to react as per 2.2.10 to yield 0.006 g (50 % vyield). Theoretical yield: 0.012 g. *H NMR
(400MHz, MeOD) & 8.62 (1H, s), 8.45 (2H, d, J = 2.16), 8.34 (1H, t, J = 1.52), 8.14-8.04
(3H, m), 7.92-7.82 (4H, m), 7.57 (2H, m), 7.38 (1H, t, J = 2.16), 7.25 (1H, t, J = 2.16),
5.84 (2H, s), 4.66-4.58 (4H, m), 2.33 (3H, s), 2.22-2.17 (2H, m), 1.95-1.91 (2H, m)
(Figure 50). *C NMR (100MHz, MeOD) & 171.02, 168.11, 167.48, 159.77, 159.72,

154.78, 152.97, 152.70, 141.29, 140.82, 135.22, 135.11, 128.72, 128.57, 128.38, 128.30,
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124.68, 124.54, 119.83, 119.11, 118.59, 118.28, 118.02, 116.42, 116.37, 67.66, 28.11,

26.86, 21.01 (Figure 90). ESI (-ve) m/z calculated for C37H2gN7013S,™ [(M-2S03-1H+)]
764.80, found 764.37 (Figure 121).
5-(3-((1-(4-(2-(3,5-dihydroxyphenyl)-4-oxoquinazolin-3(4H)-yh)butyl)-1H-1,2,3-
triazol-4-yl)methyl)-4-oxo-3,4-dihydroquinazolin-2-yl)-1,3-phenylene bis(sulfate)
(CS8). C8 (0.01 g, 0.0162 mM), was solubilized in 3 ml acetonitrile followed by addition
of triethylamine (0.05 ml, 0.3898 mM) and SOsMe3N (0.054 g, 0.3898 mM) and allowed
to react as per 2.2.10 to yield 0.006 g (40 % vyield). Theoretical yield: 0.015 g. *H NMR
(400MHz, MeOD) & 8.61 (1H, s), 8.47 (2H, d, J = 2.2), 8.35 (2H, d, J = 2.2), 8.19-8.10
(2H, m), 7.95-7.85 (2H, m), 7.57 (2H, t, J = 7.48), 7.44 (1H, t, J = 2.2), 7.37 (1H, t, J =
2.2),5.87 (2H, s), 4.72 (2H, t, J = 6.32), 4.61 (2H, t, J = 6.92), 2.25-2.21 (2H, m), 1.99-
1.93 (2H, m) (Figure 51). *C NMR (100MHz, MeOD) & 168.12, 167.53, 160.10, 159.82,
154.84, 154.64, 153.03, 152.85, 143.93, 141.06, 140.84, 135.28, 135.10, 128.77, 128.63,
128.36, 128.32, 127.18, 124.60, 118.96, 118.54, 118.19, 118.00, 116.42, 116.40, 67.71,
60.67, 28.24, 26.93, 24.99 (Figure 91). ESI (-ve) m/z calculated for CasHysN70188,™
[(M-3S0;-1H+)] 722.87, found 722.30 (Figure 122).
4-(3-((1-(4-(2-(4-hydroxy-3-methoxyphenyl)-4-oxoquinazolin-3(4H)-yl)butyl)-1H-
1,2,3-triazol-4-yl)methyl)-4-oxo0-3,4-dihydroquinazolin-2-yl)-2-methoxyphenyl
sulfate (CS9). (0.03 g, 0.0446 mM), was solubilized in 3 ml acetonitrile followed by
addition of triethylamine (0.08 ml, 0.5359 mM) and SO3Me;3N (0.074 g, 0.5359 mM) and
allowed to react as per 2.2.10 to yield 0.02 g (54 % yield). Theoretical yield: 0.037 g. *H

NMR (400MHz, MeOD) & 7.86 (1H, s), 7.38-7.07 (10H, m), 6.86-6.70 (3H, m), 5.06
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(2H, s), 4.35 (2H, s), 3.62 (6H, d, J = 6.44), 1.73 (2H, s), 1.36 (2H, s) (Figure 52). °C

NMR (100MHz, MeOD) & 165.04, 164.63, 157.86, 157.63, 150.37, 150.31, 149.74,
149.40, 142.95, 142.28, 142.16, 134.29, 134.18, 133.67, 133.45, 126.16, 125.71, 125.56,
124.38, 122.40, 121.59, 120.91, 113.39, 113.31, 111.94, 55.67, 55.63, 50.09, 42.42,
26.23, 25.01 (Figure 92). ESI (-ve) m/z calculated for CssHsN7O1S4™*  [(M+Na)]

852.81, found 852.40 (Figure 123).
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Chapter 3 Results and Discussion

3.1 Dimerization of quinazolinones using click chemistry

A number of different approaches have been tried to dimerize molecules. Some of
the most popular methods are: 1. Ulmann coupling of halogenated monomers, 2. metal-

catalyzed cross coupling, 3. phenol oxidative coupling and 4. nucleophilic substitution.

Ulmann coupling is probably one of the oldest dimerization methods. It is a
copper catalyzed coupling of aryl halides. However, high reaction temperatures (260-300
°C) and poor yields (20-30%) (Scheme 4).®° Metal catalyzed cross coupling reactions is
another way which has been used extensively. It consists of two main type of reactions,
Stille coupling and Suzuki coupling. Stille reaction is a coupling reaction in which an
organotin compound is coupled with an sp? hybridized organohalide catalyzed by
palladium (Scheme 5).°* The high cost of the palladium catalyst, the need for an
extremely oxygen free environment and the high probability of side reactions are the
major drawbacks associated with such chemistry.®? Suzuki is again a palladium catalyzed
reaction between the aryl, vinyl boronic acid with aryl or vinyl halide (Scheme 6).%® This
is an excellent option if the boronic acid derivative is commercially available as the point
of contention is synthesis of the boronic acid derivative of the required starting material

since it is problematic. Nucleophilic substitution is the simplest approach which can be
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used for dimerization. In this case, dihaloalkanes, dihaloalkenes, dihalophenyls can be

used as linkers in a Sn2 type reaction (Scheme 7).>° Thus, in spite of a large number of
options being available, none of the above reactions satisfy the requirements needed in a

reaction for the purpose of synthesizing a library.

Scheme 4 General scheme for Ulmann Coupling

ey S e )
220° C, 180 min

NO, R R

R= NOZ
Scheme 5 General scheme for Stille Coupling

PdCl,, PtBuj, Cul
QX + Bu3SnR > @R
100 °C, 15 hours

X =ClI, Br R = Ar, vinyl

Scheme 6 General scheme for Suzuki Coupling

Pd, base

Scheme 7 General scheme for Nucleophilic Substitution
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Despite the drawbacks of the above mentioned reactions, synthesizing a library of

small organic molecules either by dimerization or any other method has been pursued and
mastered in the last decade. From the years 2005 to 2009 alone, in excess of 2200
libraries of small molecules each containing hundreds of molecules of varying scaffolds
have been generated.””’® Different approaches like solid-support chemistry,
combinatorial chemistry, multicomponent reactions etc. have been used for achieving this
feat.™® Production of small molecule libraries via high-throughput extraction, purification
and characterization has also gained popularity in recent times.”” However, in this huge
collection of small molecules, there in not a single library which contains molecules that
can mimic heparin. In other words, creating a library of non-saccharide sulfated small

molecules has never been attempted before.

The production of such a library of small sulfated molecules is necessary as it
would probably unravel important information about heparin-protein interactions. Thus,
the first aim of this thesis project was thus, to try and establish a protocol for dimerization
of the quinazolinone monomers using reactions which have the following qualities: no
protection-deprotection strategies, mild reaction conditions, high yields and easy
purifications. It was decided to take the click chemistry approach considering high yields,
mild conditions and easy purification are one of the main characteristics of this reaction.
Another advantage of this reaction is that there is no stereochemical complication. Using
copper sulfate (CuSQO,) as a catalyst at room temperature affords exclusively the 1,4-
regioisomer.”* This 1,4-regioisomer was confirmed using NMR spectroscopy as

mentioned in the experimental section. After careful optimization and manipulation of the
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solvent systems and catalyst, the reaction was calibrated to afford maximum yields.

Thus, it was now possible to dimerize molecules with free hydroxyl groups. Monomers
having a variety of functional groups, i.e. hydroxyl, acetyl and methoxy were tested to
ensure the compatibility of this reaction with these functional groups. Monomers with up
to two hydroxyl groups were successfully dimerized to the product having four free
hydroxyl groups. This was achieved at yields ranging from 60-80 %. Unlike Suzuki
reaction, where the coupling reaction is very efficient but preparation of the desired
monomers is difficult, in this case preparation of the monomers for the click reaction was
relatively easy consisting of Sn2 reactions at room temperature, quantitative yields and
easy purification. Since, this protocol is now well established, efforts are on in our lab to
increase the number and diversity of these hydroxyl groups with the aim of having dimers

with greater structural diversity.

3.2 Non-aqueous purification of sulfated molecules

As mentioned previous, the major hurdle in synthesizing a library of small
sulfated molecules was the considerable loss of yield and time due to the aqueous
purification process like size exclusion chromatography. Because of extremely dilute
chromatographic fractions, to overcome the limit of detection, the sample size for
purification had to be in excess of 200 mg. This might not seem like a lot but if the
synthetic scheme involves a large number of steps before sulfation, most often than not
the first step has to be performed in multi-gram quantities to end up with the required

amount. This results in rise in expense, not only due to the high amounts of starting
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material used, but also in terms of the solvents and keeping the cost per reaction low is a

very important parameter for the synthesis of such a library. For size exclusion
chromatography to be performed, the column needs to be washed with the
chromatographic vehicle, that is water for 12 hours. This is then followed by loading the
sample and eluting it for the next 12 hours. The fractions containing the compound of
interested are pooled together and lyophilized, which takes approximately 24 hours
before it can be subjected to cation exchange. Thus, the total time required for such
purifications is in excess of 48 hours. We had hypothesized earlier that considering the
highly lipophilic backbone, if the charge of the sulfate is masked in some way, it would
allow non-aqueous means to be employed for purification. The sulfation reaction was
carried out in sulfur trioxide complexed with triethyl amine. The triethyl amine counter
ion is sufficiently lipophilic to mask the charge of the sulfate. As expected, when
subjected to normal phase silica gel column chromatography, using dichloromethane and
methanol (0-20 %) as the solvent system, the dimers with as many as four sulfate groups
could be easily chromatographed. With the success of this technique, such purifications
were tried using a flash chromatography using the same solvent system, aiming to further
reduce the purification time and further reducing the minimum sample size required for
purification. This method was extremely successful and dimers with as many as four
sulfate groups could be easily purified. The phenomenally low purification time (15
minutes) and low sample size requirements (15 mg) has made this a very valuable

development towards the synthesis of libraries of small sulfated molecules.
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Table 6 The following table gives a comparison between the different aspects of

agueous and non-aqueous chromatography.

Parameters

Aqueous

Non-aqueous

Eluent

Water

DCM : MeOH (0-20 %)

Separation media Sephadex G-10 Silica gel
Time ~ 48 hrs. ~0.25 hrs.
Minimum sample size 200 mg 15 mg

3.3 Screening against coagulation enzymes

The synthesized compounds were screened against factor Xa, thrombin and factor

Xla, the most important targets for anticoagulant agents. The synthesized molecules were

first screened against each enzyme at 500 uM concentration and the residual enzyme

activity calculated. If any compound showed 0 % residual enzyme activity, i.e. it

completely inhibits the enzyme at this concentration, then its IC50 was calculated.
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6
Factor Xa inhibition. Compounds present at 500 uM. Standard error in

Figure 124

this experiment was less than 10 %.
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Thus, the residual enzyme activity for each compound was greater than 50 %

indicating that these molecules do not have much inhibitory effects on factor Xa.
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Firgure 125 Thrombin inhibition. Compounds present at 500 uM. Standard error in

this experiment was less than 10 %.
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In case of thrombin, the non-sulfated dimers were found to be inactive with the
residual enzyme active for each compound not going below 50 %. The same was
observed for the sulfated monomers. However, in case of the sulfated dimers, a clear
trend is evident. ‘CS2’ has one sulfate group, ‘CS3’ has two sulfates, ‘CS4’ and ‘CS9’
also have two sulfates but with additional acetyl and methoxy groups respectively. ‘CS5’,
‘CS7’ have three sulfates and ‘CS8’ has four sulfate groups (Figure 3). Thus, as the

number of sulfate group increases from 1-4 the inhibitory activity with respect to

thrombin decreases.
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Figure 126  Structures of the sulfated dimers CS2, CS3, CS4, CS5, CS7, CS8, CS9.
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Factor Xla inhibition. Compounds present at 500 uM. Standard error in

Figure 127

this experiment was less than 10 %.
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For factor Xla, yet again the non-sulfated dimers did not show any substantial

inhibition. However, for sulfated dimers, again there is an interesting trend which is

present. The mono-sulfated molecule ‘CS2’ was completely inactive. The compounds

containing 2 and 3 sulfates viz. CS3, CS4, CS5, CS7 and CS9 almost completely

inhibited the enzyme at 500 uM. While ‘CS8’ which has 4 sulfates was again inactive. In

order to make a better comparison between CS3, CS4, CS5, CS7 and CS9 their IC50’s

were determined.
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Figure 128  1C50 curve for CS3

2D Graph 7
IC50 = 4.86 pM
Coefficient Std. Error t P
logIC50 | -2.0817 0.0052 -403.315 | <0.0001
Ym 98.1641 0.3262 300.9777 | <0.0001
Yo 1.81E-09 0.2564 7.07E-09 | 1
HS 3.9574 0.1881 21.0357 | <0.0001
Figure 129  IC50 curve for CS4
2D Graph 8

IC50 = 158.79 pM

80 -

60

Y Data

40

20 4

-20 T T T T
-1.5 -1.0 -0.5 0.0

® CollvsCol2
—— xcolumn vs y column

Coefficient | Std. Error t P
logIC50 | -0.8159 0.007 -116.8752 | <0.0001
Ym 96.2958 0.6338 151.9312 | <0.0001
Yo 5.58E-09 | 0.5984 9.33E-09 |1
HS 5.3502 0.3011 17.7659 <0.0001
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Figure 130  1C50 curve for CS9
2D Graph 10
100 A ICSO = 13870 p.M
Coefficient Std. Error t P
logIC50 | -0.8579 0.008 -106.6184 <0.0001
Ym 95.1395 0.783 121.5022 <0.0001
Yo 4.18E-01 0.6098 6.86E-01 0.5185
HS 5.85 0.31 18.8724 <0.0001
Figure 131  IC50 curve for CS5
2D Graph 4
IC50 = 212.86 pM|
Coefficient Std. Error t P
logIC50 -0.6719 0.0114 -59.0696 | <0.0001
Ym 92.6748 1.4844 62.4327 | <0.0001
Yo 5.30E-02 1.9056 2.78E-02 | 0.9785
HS 4.8683 0.6124 7.9492 <0.0001
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Figure 132  1C50 curve for CS7

2D Graph 11
e e Ic50 = 27252 pM
Coefficient Std. Error t P
logIC50 -0.5646 0.0094 -60.0924 <0.0001
Ym 90.5654 1.0855 83.4344 <0.0001
Yo 3.11E-10 0.9839 3.16E-10 1
HS 4.0509 0.3327 12.1744 <0.0001

Thus, summarizing the above results, the simplest structure CS3 having just two
sulfates is the most potent with an IC50 of 4.86 uM. As the substitutions increase, as in
the case of CS4 and CS9 the IC50 goes up to 152.79 and 138.70 uM respectively. Both
CS5 and CS7 have 3 sulfates and their IC50’s are 212.86 and 272.52 respectively. Hence,

as the number of sulfates increases from 2 to 3 the potency decreases.

Even more interesting is the level of specificity of these interactions. From the
above results, it is evident that by changing the number of sulfates present in the
molecule, there are subtle changes in the specificity for different enzymes. While the
monosulfated CS2 is the most potent compound in case of thrombin, it is completely

inactive in case of factor Xla and factor Xa. Similarly, CS3 which has an IC50 of 4.86
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uM for factor Xla, is inactive for factor Xa and weakly interacts with thrombin (residual
enzyme activity 22 % at 500 uM). Figure 10 provides a comparison of this sulfate

mediate selectivity for different enzymes.

Figure 133  Residual enzyme activity comparison between factor Xa, thrombin
and factor Xla for sulfated dimers CS2, CS3, CS4, CS9, CS5, CS7, CS8. The x-axis

depicts the compound number followed by the substitution pattern.
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Further, the next graph is a plot of the IC 50 for factor Xla giving a better idea of

the structural requirements for factor Xla inhibition.
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Figure 134  Plot of IC 50 of sulfated dimers CS2, CS3, CS4, CS9, CS5, CS7, CS8.

X-axis represents the important functional groups present on each compound.
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Thus, as expected, small change in the charge density can lead to a considerable
change in the activity. The best molecule ‘CS3’ is very interesting as it is considerably
potent towards factor Xla inhibition (IC 50 = 4.86 uM), considerably selective for this

enzyme and hence, can be used as a lead for developing a better more selective molecule.
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3.4 Advantages of targeting factor Xla

The pathway for thrombus formation involves mainly two phases, the initiation
phase and amplification phase.® Tissue factor (TF) is present on the cell surface and upon
vascular injury this TF is exposed. This exposed TF, activates factor VII (to Vlla) and
forms a TF-VIla complex. This complex, further activates factor 1X (to 1Xa) and factor X
(to Xa). Factor Xa ultimately activates prothrombin to thrombin. Tissue factor pathway
inhibitor (TFI) and antithrombin normally inhibit this thrombin generation rapidly.
However, small amounts of residual thrombin can activate fator Xl (to Xla) which
subsequently activates platelet bound factor IX (to IXa). This is the beginning of the
amplification phase. The factor Xla then generates thrombin via factor Xa mediated
activation which results in localized thrombus formation at the sites of injury.®® Figure
12 gives a schematic representation of the above mentioned phases. Its well known that
LMWH, UFH and warfarin, target multiple coagulation factors due to which this therapy
is associated with bleeding complications and a narrow therapeutic window. Although,
fairly selectively thrombin and factor Xa inhibitors are available, since these act on the
initiation phase, they affect the normal hemostasis and thus create opportunities for
bleeding complications. Also, being fairly new, their clinical efficacy and safety are still
being studied.®® Conversely, since factor Xla is a part of the amplification phase,
targeting factor Xla will reduce thrombus formation and since this will not affect the
initiation phase, it would not affect the hemostasis and thus, should not present any
bleeding complications. Further proof of the safety in targeting factor Xla was provided

by Hanson and Gruber. They demonstrated using a baboon thrombosis model, that
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inhibition of factor Xla using a anti factor Xla antibody, did not prevent thrombus

initiation, yet it reduced the intraluminal thrombus growth to a significant extent. Even
more significantly, this antibody, did not prolong the bleeding time.®” Thus, targeting
factor Xla seems like a promising strategy in order to develop safe as well as efficacious

drugs.

Figure 135 Schematic representation of the initiation and amplification phases in
the coagulation cascade. (Figure adapted from Gailani, D.; Renne, T. Intrinsic pathway
of coagulation and arterial thrombosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2507-

2513.)

Contact Activation

Prothrombin Thrombin.—-

Ny

Fibrinogen Fibrin

www.manaraa.com



78
3.5 Probable binding site

Factor Xla, a serine protease, exists as a disulfide linked homodimer having a
molecular mass of approximately 160 kDa. Within each monomer, the N-terminal heavy
chain contains four ‘apple domains’ which are basically repeating loops of 90-91 amino
acids. Natural ligands such as factor X1 and other platelet glycoproteins bind at this site.®®
The C-terminal of each monomer contains the catalytic domain.®® The binding sites for
heparin are located in two areas, the apple-3 domain, where the basic residues present
interact with heparin and the catalytic domain.”® Since, CS3 is designed to mimic
heparin, it is possible that it binds to the apple-3 domain. Another observation that also
suggests binding of CS3 to apple-3 is the observed selectivity. All serine protease share
similar homology, especially at the active site. Thus, it is extremely difficult to achieve
selectivity for an active-site inhibitor. However, there might be considerable difference at
other sites. Heparin exploits the basic residues at allosteric sites, leading to a
conformation change, finally causing inhibition. At this point, the data suggests that CS3
also binds at an allosteric site, which could most probably be the apple-3 domain,
however this can be readily verified by performing Michaelis-Menten Kinetics
experiment. If this is the case, then it will be significantly easy to maximize the affinity

while maintaining or even improving the selectivity.
3.6 Summary

Thus, it is evident that subtle changes in structure can lead to enormous changes in

affinity, selectivity etc. towards different proteins. Before beginning this study, the main
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aim was to establish a protocol for dimerization and non-aqueous purification of sulfated

molecules with the final aim of making the synthesis of a library of small sulfated
molecules a possibility. The need was this library was emphasized in the beginning and
the outcome of testing this small library has supported our claim. However, a larger
library would provide us with even more information and hopefully, it will one day be
possible to predict the effect of a sulfated molecule on a protein. Also, from the results of
the biological screening, the importance of sulfation is clear, with all the unsulfated
molecules being inactive. Further, the sulfated monomers also were inactive or weakly
active, indicating the need for making dimers and possibly in the future, trimers and
tetramers. The aim and focus of our lab has been to understand this complex system, as

drug discovery and design is only a byproduct of this understanding.
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Chapter 4 Future Directions

‘CS3’ seems like a promising lead, having an IC 50 of 4.86 uM against factor Xla with
considerable selectivity. However, further studies will enable us to optimize the design
and attain better activity as well as selectivity. A ‘two-pronged’ approach consisting of
synthetic exploration and biochemical studies might be a good way to further explore this
lead and optimize its structure.

4.1 Synthetic exploration

The structure of CS3 leaves great room for making further modifications with a view of
achieving maximum inhibitory potential. Since the non-sulfated analogue of CS3 was
found to be inactive, the importance of the sulfate group for activity is well established.
However, the position of the sulfate group can be modified further to check for any effect
on activity (Table 7). The chain length for the azide as well as propargyl linker can also
undergo substantial exploration to optimize the chain length. The best way to do this
efficiently would be to reduce one carbon from the azide side first and depending on the
outcome of this chain length reductions further modifications can be made (Table 8).
Once the optimum structure is established, the 1,5-regioisomer of that analogue can be

synthesized to analyze the effect of this subtle change in geometry (Figure 137).

80
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Figure 136  Possible structural modifications

,\; 1
Table 1 Modification of R; and R, (Color red represents substitution pattern
of CS3)
R1 R2
3-S0% 3-S0%
2-SO3 2-SO3
4-SO3 4-SO3
2-S0% H
3-S0% H
4-SO3 H
H 2-S0%
H 3-S0%
H 4-S03
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Table 2 Modifications of n1 and n2 (Color red represents substitution pattern

of CS3)
nl n2
4 1
3 1
2 1
4 2
4 2
3 2
2 2
3 3

Figure 137  1,5-regioisomer of the optimized structure

4.2 Biochemical studies and x-ray crystallography

Since these molecules are synthesized as heparin analogues, it is hypothesized that they

bind to the heparin binding site on factor Xla. However, this needs to be confirmed by

doing several biochemical experiments. The simplest experiment which would give us an
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idea if it is binding to a site other than the active site is the Michaelis-Menten kinetics

experiment. This experiment will also provide information about the inhibition, whether
competitive, non-competitive or uncompetitive.

If the above mentioned experiment indicates allosteric binding, then competitive studies
with heparin would provide further insight about the binding site of the molecule.
Further, crystallization of the optimized inhibitor with factor Xla (human or bovine)
would provide conclusive evidence about the binding site and more important binding
mode of the molecule. This will also provide the interacting amino acids and thus
broaden the scope to optimize the interactions and thus attain its maximum inhibitory

potential.
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APPENDIX A
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Figure 11
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Figure 13
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Figure 15

Q3ASA
PROTON DMSQO /opt/topspin Karuturi.R 5

00

— MO0 ™=@ = NN O NGO NI ™ (O <P T DTPM
™~ DWOM™HONINONOMIN W NSO T NCOMOD g ONOWNM
1y nn@mvmmm@wmvhm*nw-rvwwn S eEH=-ODM
SeEssecmnuon. PRLBIDIIOLA NN 9 NINININPN
— COCO0O B0 M M P ™ P I P S P e P e P P Iy NN

IS8 1 g N o TS S I R D *P%I

L.
=
=
r

JILA.;_
O O % ©|
i =
D b=
il
T T T T T T T T T T - T T T T T T T T T T T T
12 10 8 6 4 [ppm]
Figure 16
3,5 DIOAc quin propargyl sc - §
PROTON CDCI3 /opt/topspin Karuturi.R 25 a
ANMNOINWOOININOONNOMNOMONDING o0 SO N
LNOWARNINEOOLMONMOLN ) 00 o nooey 9
HONONOOINTONWWONDONOON n= SO0 N e}
QRNNNNNNNAT T T 3T =SS5 ey AT o
LN N e N N N N Y nn NN o] o
S
o~
[
-
Lo
-
-1
1 LJ | lﬂ. L-I—_L-_Q
N o9 = ] |2
N |9 I~ I~ S o
(2! I ey | = et I =(
=il ) =il L
T T T T — 7T T
7 6 5 4 3 [ppm]

www.manharaa.com




100
Figure 17

QP3HSH Purified -9
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3,5 Diacety! quinazolinone w azide sc 0
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Figure 20
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Figure 21

3-0Ac, 5-0H quin azide sc
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Figure 26
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Figure 29
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Figure 31

CQ3H3H deprotection by LIOH
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Figure 34

CQ3H-5H3H
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Figure 36
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Figure 38
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Figure 40
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Figure 42
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Figure 44
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Figure 46
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Figure 48
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Figure 50
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Figure 52
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Figure 53
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Figure 55
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Figure 57
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Figure 59
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Figure 63
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Figure 64
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Figure 66
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Figure 67
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Figure 68
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Figure 69

QCI3M4A C13 48
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Figure 71
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Figure 72
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Figure 73
CQ3ASH3H REF33 C13
CI13CPD MeQD /opt/topspin Karuturi.R 20

© ™00 OROLNGO MNOW COSMLNIOIWD NN =Y M M T Oy = NGO

NN INOWHMOM MINVINOCOCO™OOOMINMINWANMNIN™ o~ o0 MO
00 Fr= vOOCOM MANGD MMM =0T INMMOOMM=MO~INWOR o~ ~ -0
= M HMION DO TMHMHANTMONN T T HONHM BN N~ % KNS
= =S8 Main eI 15 < e m ® e
N OO OONIN NN M YN N ™~ =3 O MO
- e w 1= M ey

¥ Sl S S e Y

160 140 120 100 80 60 40 [ppm]
Figure 74
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CQ3H-SH3H
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Figure 77
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Figure 79
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Figure 81
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Figure 83
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Figure 84
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Figure 85
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Figure 89
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Figure 91
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Figure 95
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Figure 98
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Figure 101
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Figure 109
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Figure 111
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Figure 113
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Figure 115
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Figure 117
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Figure 119
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Figure 121
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Figure 122
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